feat: Préparation de la gestion de la mémoire (LDT/GDT)
This commit is contained in:
parent
8635744ec7
commit
39822e8f9e
|
@ -0,0 +1,26 @@
|
|||
/***********************************/
|
||||
/* Librairie Kmemory.h */
|
||||
/* 20 Mars 2007 */
|
||||
/***********************************/
|
||||
|
||||
|
||||
#ifndef JREKCED_KERNEL_MEMORY
|
||||
# define JREKCED_KERNEL_MEMORY
|
||||
|
||||
# include "type.h"
|
||||
|
||||
# define MEMORY_BLOC_SIZE (1024L) /* Taille des blocs */
|
||||
|
||||
// Initialise les gestionnaire de memoire.
|
||||
void Kernel_InitMemory (void *DataMemory, // DataMemory pointe vers la zone de memoire disponible.
|
||||
UDWORD TotalMemorySize); // TotalMemorySize est la quantite total de memoire disponible.
|
||||
|
||||
void * Kernel_mballoc(UDWORD Size); // Alloue SIZE blocs de memoire et retourne un pointeur sur la zone.
|
||||
// Retourne un pointeur nul si l'allocation est impossible.
|
||||
|
||||
int Kernel_mbfree (void *Adresse); // Libere le bloc memoire alloue a l'adresse ADRESSE.
|
||||
// Retourne -1 si adresse incorrecte et 0 si tout s'est bien deroule.
|
||||
|
||||
void * Kernel_mbrealloc (void *Adresse, UDWORD Size); // Redimensionne un bloc, retourne NULL si le bloc
|
||||
// n'est pas redimensionne.
|
||||
#endif
|
|
@ -0,0 +1,85 @@
|
|||
/***********************************/
|
||||
/* Librairie LDT.h */
|
||||
/* 23 Mars 2007 */
|
||||
/***********************************/
|
||||
|
||||
#ifndef JREKCED_LDT
|
||||
# define JREKCED_LDT
|
||||
|
||||
# include "type.h"
|
||||
|
||||
# define LDT_BLOC_SIZE (128) /* Nombre de descripteur LDT dans un bloc */
|
||||
|
||||
// Types d'acces
|
||||
# define GLT_ACCESSED (0x1)
|
||||
|
||||
# define LDT_DATA (0x0)
|
||||
# define LDT_DATA_WRITE (0x2)
|
||||
# define LDT_DATA_EXPAND (0x4)
|
||||
|
||||
# define LDT_CODE (0x8)
|
||||
# define LDT_CODE_READ (0xA)
|
||||
# define LDT_CODE_CONFORMING (0xD)
|
||||
|
||||
// Granularite
|
||||
# define LDT_BYTE (0x0)
|
||||
# define LDT_4KB (0x1)
|
||||
|
||||
// Mode du CPU
|
||||
# define LDT_16BIT (0x0)
|
||||
# define LDT_32BIT (0x1)
|
||||
|
||||
|
||||
typedef struct
|
||||
{
|
||||
UWORD Limite_0_15; // Bit 00-15 : Limite (0-15)
|
||||
UWORD Adresse_0_15; // Bit 16-31 : Adresse (0-15)
|
||||
UBYTE Adresse_16_23; // Bit 32-39 : Adresse (16-23)
|
||||
UBYTE Acces : 1; // 0 = System
|
||||
// 1 = Code ou data
|
||||
UBYTE Type : 4; // Bit 41-44 : Type
|
||||
UBYTE DPL : 2; // Spécifie le niveau de privilège du segment
|
||||
UBYTE Present : 1; // Indique si le segment est en mémoire (bit a 1) ou non (bit a 0)
|
||||
UBYTE Limite_16_19 : 4; // Bit 48-51 : Limite (16-19)
|
||||
UBYTE UserDefine : 1; // Bit 52 : Utilisation libre
|
||||
UBYTE Unused : 1; // Bit 53 : Non utilise (toujours = 0)
|
||||
UBYTE CPUMode : 1; // Bit 54 : = 0 -> 16-Bit
|
||||
// = 1 -> 32-Bit
|
||||
UBYTE Granularite : 1; // Si = 0 : Limite = 1 octet -> 1 Mo
|
||||
// Si = 1 : Limite = 4 Ko -> 4 Go
|
||||
UBYTE Adresse_24_31; // Bit 56-63 : Adresse (24-31)
|
||||
} T_LDT;
|
||||
|
||||
|
||||
typedef struct
|
||||
{
|
||||
UWORD Size; // Taille de la GDT
|
||||
void * Adresse; // Adresse phisique de la GDT;
|
||||
UWORD Empty;
|
||||
|
||||
} T_LDT_reg;
|
||||
|
||||
|
||||
// T_LDT *GDT_BASE = ((T_LDT*)0x0800L); /* Addresse physique ou reside la GDT, le 1e element est toujours null */
|
||||
|
||||
|
||||
T_LDT * LDT_balloc (UWORD Size); // Alloue un bloc de Size LDT
|
||||
|
||||
int LDT_bfree (void * Adresse); // Libere un bloc LDT
|
||||
|
||||
T_LDT * LDT_brealloc (T_LDT * OldLDT, UWORD NewSize); // Redimensionne un bloc LDT, retourne NULL en cas d'erreur.
|
||||
|
||||
T_LDT * LDT_AllocLDT (T_LDT *BaseLDT); // Cherche un LDT libre dans un bloc precedement
|
||||
// alloue avec LDT_balloc.
|
||||
// Retourne NULL si aucun bloc disponible.
|
||||
// Si un bloc libre est trouve, il est marque comme
|
||||
// utilise et un pointeur sur ce LDT est retourne.
|
||||
|
||||
int LDT_FreeLDT (T_LDT *LDT); // Marque le LDT comme non utilise et le met a NULL.
|
||||
|
||||
int LDT_MapMemory (T_LDT *LDT, void * Linear, // Met des donnees dans un LDT.
|
||||
UDWORD Size, // Cette fonction est a tester.
|
||||
UBYTE Granularite,
|
||||
UBYTE DPL, UBYTE Type,
|
||||
UBYTE CPUMode);
|
||||
#endif
|
|
@ -0,0 +1,31 @@
|
|||
/***********************************/
|
||||
/* Librairie Type.h */
|
||||
/* 20 Mars 2007 */
|
||||
/***********************************/
|
||||
|
||||
#ifndef JREKCED_TYPE
|
||||
# define JREKCED_TYPE
|
||||
|
||||
# define NULL (0x0LL)
|
||||
|
||||
typedef char int8;
|
||||
typedef short int16;
|
||||
typedef int int32;
|
||||
typedef long long int64;
|
||||
|
||||
typedef char BYTE;
|
||||
typedef short WORD;
|
||||
typedef long DWORD;
|
||||
typedef long long QWORD;
|
||||
|
||||
typedef signed char SBYTE;
|
||||
typedef signed short SWORD;
|
||||
typedef signed long SDWORD;
|
||||
typedef signed long long SQWORD;
|
||||
|
||||
typedef unsigned char UBYTE;
|
||||
typedef unsigned short UWORD;
|
||||
typedef unsigned long UDWORD;
|
||||
typedef unsigned long long UQWORD;
|
||||
|
||||
#endif
|
|
@ -0,0 +1,156 @@
|
|||
/***********************************/
|
||||
/* Librairie Kmemory.c */
|
||||
/* 20 Mars 2007 */
|
||||
/***********************************/
|
||||
|
||||
#include <type.h>
|
||||
#include <Kmemory.h>
|
||||
|
||||
/* Structure table d'allocation memoire */
|
||||
typedef struct
|
||||
{
|
||||
UBYTE Used : 1; // = 0 -> La zone memoire est libre.
|
||||
// = 1 -> La zone memoire est utilisee.
|
||||
UBYTE Expand : 1; // = 0 -> Fin du bloc.
|
||||
// = 1 -> Le bloc se prolonge sur le bloc suivant.
|
||||
UBYTE UnUsed : 6; // Zone libre.
|
||||
} T_KernelMemoryMap;
|
||||
|
||||
|
||||
T_KernelMemoryMap * BlocAllocate = NULL; // Table d'allocation des blocs memoire.
|
||||
void * BaseDynAlloc = NULL; // Pointeur sur la zone memoire allouable.
|
||||
UDWORD MaxMemoryBlocs;
|
||||
|
||||
|
||||
// Initialisation du gestionnaire de memoire.
|
||||
void Kernel_InitMemory (void *DataMemory, UDWORD TotalMemorySize)
|
||||
{
|
||||
UDWORD Boucle;
|
||||
UDWORD TableBlocs;
|
||||
UDWORD TotalBlocs;
|
||||
|
||||
// Alignement des bloc de memoire a un multiple de MEMORY_BLOC_SIZE
|
||||
if ( (UDWORD)DataMemory % MEMORY_BLOC_SIZE != 0)
|
||||
{ DataMemory = ((void*) ((((UDWORD)DataMemory) / MEMORY_BLOC_SIZE) * MEMORY_BLOC_SIZE) + MEMORY_BLOC_SIZE ); };
|
||||
|
||||
TotalBlocs = (((void*)TotalMemorySize) - DataMemory) / MEMORY_BLOC_SIZE;
|
||||
TableBlocs = TotalBlocs / MEMORY_BLOC_SIZE;
|
||||
MaxMemoryBlocs = TotalBlocs - TableBlocs;
|
||||
BlocAllocate = (T_KernelMemoryMap *)DataMemory;
|
||||
BaseDynAlloc = DataMemory + (TableBlocs * MEMORY_BLOC_SIZE);
|
||||
|
||||
for (Boucle = 0; Boucle < MaxMemoryBlocs; Boucle++)
|
||||
{
|
||||
BlocAllocate [Boucle].Used = 0;
|
||||
BlocAllocate [Boucle].Expand = 0;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Alloue SIZE blocs de memoire
|
||||
void * Kernel_mballoc(UDWORD Size)
|
||||
{
|
||||
UDWORD Counter = 0;
|
||||
UDWORD Base = 0;
|
||||
UDWORD Boucle, Boucle2;
|
||||
|
||||
if (Size == 0) return NULL;
|
||||
|
||||
for (Boucle = 0; Boucle < MaxMemoryBlocs; Boucle++)
|
||||
{
|
||||
if (BlocAllocate[Boucle].Used == 0) { Counter++; }
|
||||
else { Counter = 0; Base = Boucle + 1; }
|
||||
|
||||
if (Counter >= Size)
|
||||
{
|
||||
if (Base+Size > MaxMemoryBlocs) return NULL;
|
||||
for (Boucle2=Base; Boucle2 < (Base+Size); Boucle2++)
|
||||
{
|
||||
BlocAllocate[Boucle2].Used = 1;
|
||||
if (Boucle2+1 < (Base+Size) ) { BlocAllocate[Boucle2].Expand = 1; }
|
||||
else { BlocAllocate[Boucle2].Expand = 0; }
|
||||
}
|
||||
return ((void*) (BaseDynAlloc + (Base * MEMORY_BLOC_SIZE) ));
|
||||
}
|
||||
}
|
||||
return NULL;
|
||||
}
|
||||
|
||||
// Libere un bloc memoire
|
||||
int Kernel_mbfree (void *Adresse)
|
||||
{
|
||||
UDWORD Bloc;
|
||||
|
||||
if (((Adresse - BaseDynAlloc) % MEMORY_BLOC_SIZE) != 0) return -1;
|
||||
if ((((UDWORD)Adresse) % MEMORY_BLOC_SIZE) != 0) return -1;
|
||||
|
||||
Bloc = (Adresse - BaseDynAlloc) / MEMORY_BLOC_SIZE;
|
||||
|
||||
for (; BlocAllocate[Bloc].Expand == 1; Bloc++)
|
||||
{
|
||||
BlocAllocate[Bloc].Used = 0;
|
||||
BlocAllocate[Bloc].Expand = 0;
|
||||
}
|
||||
|
||||
BlocAllocate[Bloc].Used = 0;
|
||||
BlocAllocate[Bloc].Expand = 0;
|
||||
|
||||
return 0;
|
||||
};
|
||||
|
||||
void * Kernel_mbrealloc (void *Adresse, UDWORD Size)
|
||||
{
|
||||
UDWORD Bloc, Boucle, OldSize, CopySize;
|
||||
void * NewAdresse;
|
||||
|
||||
if (((Adresse - BaseDynAlloc) % MEMORY_BLOC_SIZE) != 0) return NULL;
|
||||
Bloc = (Adresse - BaseDynAlloc) / MEMORY_BLOC_SIZE;
|
||||
if (BlocAllocate[Bloc].Used == 0) return NULL;
|
||||
|
||||
for (Boucle = Bloc; BlocAllocate[Boucle].Expand == 1; Boucle++)
|
||||
{ if (Boucle >= MaxMemoryBlocs) break; };
|
||||
|
||||
OldSize = Boucle - Bloc + 1;
|
||||
|
||||
// Si pas de changement de taille de bloc, ...
|
||||
if ( Size == OldSize) return Adresse;
|
||||
|
||||
// Si on reduit le nombre de bloc, ...
|
||||
if ( Size < OldSize)
|
||||
{
|
||||
for (Boucle = (Bloc + Size); Boucle < (Bloc + OldSize) ; Boucle++)
|
||||
{
|
||||
BlocAllocate[Boucle].Used = 0;
|
||||
BlocAllocate[Boucle].Expand = 0;
|
||||
}
|
||||
BlocAllocate[Size-1].Expand = 0;
|
||||
return Adresse;
|
||||
}
|
||||
|
||||
// Si on augmente le nombre de bloc
|
||||
for (Boucle = (Bloc + OldSize); Boucle < (Bloc + Size) ; Boucle++)
|
||||
{
|
||||
// Si le bloc ne peut etre simplement agrandit, ...
|
||||
if ( BlocAllocate[Boucle].Used == 1 )
|
||||
{
|
||||
NewAdresse = Kernel_mballoc (Size);
|
||||
if (NewAdresse == NULL) return NULL;
|
||||
CopySize = (OldSize * MEMORY_BLOC_SIZE) / sizeof (int64);
|
||||
for (Boucle = 0; Boucle < CopySize; Boucle++)
|
||||
{ ((int64*) NewAdresse)[Boucle] = ((int64*) Adresse)[Boucle]; };
|
||||
Kernel_mbfree (Adresse);
|
||||
return NewAdresse;
|
||||
}
|
||||
}
|
||||
|
||||
// Le bloc est simplement agrandit
|
||||
for (Boucle = (Bloc + OldSize - 1); Boucle < (Bloc + Size) ; Boucle++)
|
||||
{
|
||||
BlocAllocate[Boucle].Used = 1;
|
||||
BlocAllocate[Boucle].Expand = 1;
|
||||
}
|
||||
BlocAllocate[Size-1].Expand = 0;
|
||||
return Adresse;
|
||||
}
|
||||
|
||||
#undef MAX_MEMORY_BLOCS
|
|
@ -0,0 +1,236 @@
|
|||
/***********************************/
|
||||
/* Librairie LDT.c */
|
||||
/* 23 Mars 2007 */
|
||||
/***********************************/
|
||||
|
||||
#include "LDT.h"
|
||||
#include "Kmemory.h"
|
||||
|
||||
# define LDT_MANAGER_SIZE (127)
|
||||
|
||||
typedef struct // Structure de gestion des bloc LDT
|
||||
{
|
||||
void * Next; // Pointeur de chainage
|
||||
UDWORD Empty;
|
||||
T_LDT_reg LDTdesc [LDT_MANAGER_SIZE]; // Nombre de blocs LDT
|
||||
} T_LDT_Manager;
|
||||
|
||||
void LDT_initalloc (void *AllocTable, UDWORD Index, UDWORD SetSize, UDWORD TotalSize);
|
||||
T_LDT_Manager * LDT_mballoc (UWORD Size);
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////
|
||||
|
||||
T_LDT_Manager * LDT_Manager = NULL;
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////
|
||||
|
||||
T_LDT * LDT_balloc (UWORD Size) // Alloue un bloc de Size LDT
|
||||
{
|
||||
UWORD Boucle;
|
||||
UDWORD Blocs, Boucle2;
|
||||
T_LDT_Manager * * ptr_Manager = &LDT_Manager;
|
||||
T_LDT_Manager * Manager = LDT_Manager;
|
||||
|
||||
do
|
||||
{
|
||||
if (* ptr_Manager == NULL)
|
||||
{
|
||||
* ptr_Manager = Kernel_mballoc (1);
|
||||
Manager = * ptr_Manager;
|
||||
Manager->Next = NULL;
|
||||
for (Boucle = 0; Boucle < LDT_MANAGER_SIZE; Boucle++)
|
||||
{
|
||||
Manager->LDTdesc [Boucle].Adresse = NULL;
|
||||
Manager->LDTdesc [Boucle].Size = NULL;
|
||||
}
|
||||
}
|
||||
|
||||
for (Boucle = 0; Boucle < LDT_MANAGER_SIZE; Boucle++)
|
||||
{
|
||||
if (Manager->LDTdesc [Boucle].Adresse == NULL)
|
||||
{
|
||||
|
||||
Blocs = Size * sizeof(T_LDT);
|
||||
if (Blocs % MEMORY_BLOC_SIZE == 0)
|
||||
{ Blocs /= MEMORY_BLOC_SIZE; } else { Blocs = (Blocs / MEMORY_BLOC_SIZE) + 1; }
|
||||
Manager->LDTdesc [Boucle].Adresse = Kernel_mballoc (Blocs);
|
||||
if (Manager->LDTdesc [Boucle].Adresse == NULL) return NULL;
|
||||
Manager->LDTdesc [Boucle].Size = (Blocs * MEMORY_BLOC_SIZE) / sizeof(T_LDT);
|
||||
|
||||
// Mise a zero de la LDT
|
||||
for (Boucle2 = 0; Boucle2 < Manager->LDTdesc [Boucle].Size; Boucle2++)
|
||||
{ ((int64*) Manager->LDTdesc [Boucle].Adresse)[Boucle2] = NULL; }
|
||||
|
||||
return Manager->LDTdesc [Boucle].Adresse;
|
||||
}
|
||||
}
|
||||
|
||||
*ptr_Manager = Manager;
|
||||
Manager = Manager->Next;
|
||||
} while (1);
|
||||
}
|
||||
|
||||
|
||||
int LDT_bfree (void * Adresse) // Libere un bloc LDT
|
||||
{
|
||||
UWORD Boucle, Boucle2;
|
||||
int RetVal;
|
||||
T_LDT_Manager * * ptr_Manager = &LDT_Manager;
|
||||
T_LDT_Manager * Manager = LDT_Manager;
|
||||
|
||||
do
|
||||
{
|
||||
if (*ptr_Manager == NULL) { return -1; }
|
||||
for (Boucle = 0; Boucle < LDT_MANAGER_SIZE; Boucle++)
|
||||
{
|
||||
if (Manager->LDTdesc [Boucle].Adresse == Adresse)
|
||||
{
|
||||
|
||||
RetVal = Kernel_mbfree(Manager->LDTdesc [Boucle].Adresse);
|
||||
if (Boucle == 0)
|
||||
{
|
||||
Kernel_mbfree (*ptr_Manager);
|
||||
*ptr_Manager = NULL;
|
||||
return RetVal;
|
||||
}
|
||||
else
|
||||
{
|
||||
for (Boucle2 = Boucle; Boucle2 < LDT_MANAGER_SIZE-1; Boucle2++)
|
||||
{ Manager->LDTdesc [Boucle2] = Manager->LDTdesc [Boucle2+1]; }
|
||||
|
||||
Manager->LDTdesc [Boucle2+1].Size = NULL;
|
||||
Manager->LDTdesc [Boucle2+1].Adresse = NULL;
|
||||
}
|
||||
|
||||
Manager->LDTdesc [LDT_MANAGER_SIZE-1].Size = NULL;
|
||||
Manager->LDTdesc [LDT_MANAGER_SIZE-1].Adresse = NULL;
|
||||
|
||||
return RetVal;
|
||||
}
|
||||
}
|
||||
|
||||
*ptr_Manager = Manager;
|
||||
Manager = Manager->Next;
|
||||
} while (1);
|
||||
|
||||
}
|
||||
|
||||
T_LDT * LDT_brealloc (T_LDT * OldLDT, UWORD NewSize)
|
||||
{
|
||||
T_LDT * NewLDT;
|
||||
UDWORD Blocs;
|
||||
UWORD Boucle;
|
||||
|
||||
T_LDT_Manager * * ptr_Manager = &LDT_Manager;
|
||||
T_LDT_Manager * Manager = LDT_Manager;
|
||||
Blocs = NewSize * sizeof(T_LDT);
|
||||
|
||||
if (Blocs % MEMORY_BLOC_SIZE == 0)
|
||||
{ Blocs /= MEMORY_BLOC_SIZE; } else { Blocs = (Blocs / MEMORY_BLOC_SIZE) + 1; }
|
||||
|
||||
do
|
||||
{
|
||||
if (*ptr_Manager == NULL) { return NULL; }
|
||||
for (Boucle = 0; Boucle < LDT_MANAGER_SIZE; Boucle++)
|
||||
{
|
||||
if (Manager->LDTdesc [Boucle].Adresse == OldLDT)
|
||||
{
|
||||
NewLDT = Kernel_mbrealloc (OldLDT, Blocs);
|
||||
if (NewLDT == NULL) return NULL;
|
||||
Manager->LDTdesc [Boucle].Adresse = NewLDT;
|
||||
Manager->LDTdesc [Boucle].Size = NewSize;
|
||||
return NewLDT;
|
||||
}
|
||||
}
|
||||
|
||||
*ptr_Manager = Manager;
|
||||
Manager = Manager->Next;
|
||||
} while (1);
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////
|
||||
|
||||
T_LDT * LDT_AllocLDT (T_LDT *BaseLDT)
|
||||
{
|
||||
UWORD Boucle;
|
||||
UDWORD Boucle2;
|
||||
UDWORD Size;
|
||||
T_LDT_Manager * Manager = LDT_Manager;
|
||||
|
||||
if (BaseLDT == NULL) return NULL;
|
||||
|
||||
do
|
||||
{
|
||||
if (Manager == NULL) { return NULL; }
|
||||
for (Boucle = 0; Boucle < LDT_MANAGER_SIZE; Boucle++)
|
||||
{
|
||||
Size = Manager->LDTdesc [Boucle].Size;
|
||||
if (Manager->LDTdesc [Boucle].Adresse == ((void*)BaseLDT) )
|
||||
{
|
||||
for (Boucle2 = 1; Boucle2 < Size; Boucle2++) // Le 1e LDT reste null
|
||||
{
|
||||
if ( BaseLDT[Boucle2].UserDefine == 0 )
|
||||
{
|
||||
BaseLDT[Boucle2].UserDefine = 1;
|
||||
return BaseLDT+Boucle2;
|
||||
};
|
||||
}
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
Manager = Manager->Next;
|
||||
} while (1);
|
||||
}
|
||||
|
||||
int LDT_FreeLDT (T_LDT *LDT) // Marque le LDT comme non utilise et le met a NULL
|
||||
{
|
||||
if ( ((UDWORD)LDT & 0x07L) != NULL) { return -2; }
|
||||
if (LDT->UserDefine == 0) { return -1; }
|
||||
*((int64*)LDT) = NULL;
|
||||
return 0;
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////
|
||||
|
||||
int LDT_MapMemory (T_LDT *LDT, void * Linear, UDWORD Size, UBYTE Granularite, UBYTE DPL, UBYTE Type, UBYTE CPUMode)
|
||||
{
|
||||
if ( ((UDWORD)LDT & 0x07L) != NULL) { return -2; }
|
||||
|
||||
LDT->Adresse_0_15 = (DWORD)Linear & 0x0000FFFFL;
|
||||
LDT->Adresse_16_23 = ((DWORD)Linear >> 16) & 0x000000FFL;
|
||||
LDT->Adresse_24_31 = ((DWORD)Linear >> 24) & 0x000000FFL;
|
||||
LDT->Limite_0_15 = Size & 0x0000FFFFL;
|
||||
LDT->Limite_16_19 = (Size >> 16) & 0x0000000FL;
|
||||
LDT->Granularite = Granularite;
|
||||
LDT->Type = Type;
|
||||
LDT->DPL = DPL;
|
||||
LDT->CPUMode = CPUMode;
|
||||
LDT->Present = 1;
|
||||
LDT->UserDefine = 1;
|
||||
return 0;
|
||||
}
|
||||
|
||||
int LDT_load (T_LDT *LDT)
|
||||
{
|
||||
UWORD Boucle;
|
||||
T_LDT_Manager * * ptr_Manager = &LDT_Manager;
|
||||
T_LDT_Manager * Manager = LDT_Manager;
|
||||
|
||||
do
|
||||
{
|
||||
if (*ptr_Manager == NULL) { return -1; }
|
||||
for (Boucle = 0; Boucle < LDT_MANAGER_SIZE; Boucle++)
|
||||
{
|
||||
if (Manager->LDTdesc [Boucle].Adresse == LDT)
|
||||
{
|
||||
asm("lgdt %0\n" : : "m" (Manager->LDTdesc [Boucle]));
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
*ptr_Manager = Manager;
|
||||
Manager = Manager->Next;
|
||||
} while (1);
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue