feat: brouillon de gestion de mémoire paginée avec usage de TAILQ de Freebsd, ne fonctionne pas...@ suivre

This commit is contained in:
Nicolas Hordé 2018-11-22 17:21:15 +01:00
parent f04bb66ec8
commit 6acbddab8d
5 changed files with 974 additions and 56 deletions

View File

@ -4,6 +4,7 @@
#include "types.h" #include "types.h"
/******************************************************************************/ /******************************************************************************/
#define halt() asm("hlt"::)
#define sti() asm("sti"::) #define sti() asm("sti"::)

View File

@ -2,6 +2,7 @@
/* COS2000 - Compatible Operating System - LGPL v3 - Hordé Nicolas */ /* COS2000 - Compatible Operating System - LGPL v3 - Hordé Nicolas */
/* */ /* */
#include "types.h" #include "types.h"
#include "queue.h"
#define TOPAGE(addr) (addr) >> 12 #define TOPAGE(addr) (addr) >> 12
@ -10,15 +11,21 @@
#define PAGENUMBER 1024 /* Nombre de pages */ #define PAGENUMBER 1024 /* Nombre de pages */
#define KERNELSIZE PAGESIZE*PAGENUMBER*2 /* 2 pages de 4mo en identity mapping */ #define KERNELSIZE PAGESIZE*PAGENUMBER*2 /* 2 pages de 4mo en identity mapping */
#define IDT_ADDR 0x00000000 /* adresse de la IDT */ #define IDT_ADDR 0x00000000 /* adresse de la IDT */
#define GDT_ADDR 0x00000800 /* adresse de la GDT */ #define GDT_ADDR 0x00000800 /* adresse de la GDT */
#define KERNEL_PGD_ADDR 0x00001000 /* adresse de la page directory */ #define KERNEL_PD_ADDR 0x00001000 /* adresse de la page directory */
#define KERNEL_STACK_ADDR 0x0009FFFF /* adresse de la pile du kernel */ #define KERNEL_STACK_ADDR 0x0009FFFF /* adresse de la pile du kernel */
#define KERNEL_CODE_ADDR 0x00100000 #define KERNEL_CODE_ADDR 0x00100000 /* adresse du code du noyau */
#define KERNEL_PAGES 0x00800000 /* adresse des pages */
#define KERNEL_HEAP 0x10000000 /* adresse du heap */
#define USER_CODE 0x40000000 /* adresse du code utilisateur */
#define USER_STACK 0xE0000000 /* adresse de la pile utilisateur */
/* limites de la mémoire 32 bits */ /* limites de la mémoire 32 bits */
#define MAXMEMSIZE 0x100000000 #define MAXMEMSIZE 0x100000000
#define MAXMEMPAGE 1024*1024 #define MAXMEMPAGE 1024*1024
#define MAXHEAPSIZE USER_CODE-KERNEL_HEAP
#define MAXPAGESSIZE KERNEL_HEAP-KERNEL_PAGES
/* page directory */ /* page directory */
#define PAGE_PRESENT 0b000000001/* page directory / table */ #define PAGE_PRESENT 0b000000001/* page directory / table */
@ -34,7 +41,93 @@
#define PAGE_DIRTY 0b001000000 /* page écrite */ #define PAGE_DIRTY 0b001000000 /* page écrite */
#define PAGE_GLOBAL 0b100000000 /* évite que le TLB mette à jour l'adresse dans le cache si CR4 est remis à zéro (NECESSITE CR4) */ #define PAGE_GLOBAL 0b100000000 /* évite que le TLB mette à jour l'adresse dans le cache si CR4 est remis à zéro (NECESSITE CR4) */
#define MALLOC_MINIMUM 16
/* Malloc, pour l'attribution de mémoire en heap */
typedef struct tmalloc {
u32 size:31;
u32 used:1;
} __attribute__ ((packed)) tmalloc;
/* Page, pour la gestion de la mémoire virtuelle */
typedef struct page {
u8 *vaddr;
u8 *paddr;
TAILQ_ENTRY(page) tailq;
} __attribute__ ((packed)) page;
typedef TAILQ_HEAD(page_s, page) page_t;
/* Page directory, pour la gestion de la mémoire virtuelle */
typedef struct pd {
page *addr;
TAILQ_ENTRY(pd) tailq;
} __attribute__ ((packed)) pd;
typedef TAILQ_HEAD(pd_s, pd) pd_t;
/* vaddrrange, pour la gestion des pages de la mémoire virtuelle */
typedef struct vrange {
u8 *vaddrlow;
u8 *vaddrhigh;
TAILQ_ENTRY(vrange) tailq;
} __attribute__ ((packed)) vrange;
typedef TAILQ_HEAD(vrange_s, vrange) vrange_t;
void panic(u8 *string);
void memset(void *dst, u8 val, u32 count,u32 size); void memset(void *dst, u8 val, u32 count,u32 size);
void memcpy(void *src, void *dst, u32 count, u32 size); void memcpy(void *src, void *dst, u32 count, u32 size);
u32 memcmp(void *src, void *dst, u32 count, u32 size); u32 memcmp(void *src, void *dst, u32 count, u32 size);
u64 getmemoryfree(void);
u64 physical_getmemorysize();
void physical_page_use(u32 page);
void physical_page_free(u32 page);
void physical_range_use(u64 addr,u64 len);
void physical_range_free(u64 addr,u64 len);
u8* physical_page_getfree(void);
void physical_init(void);
void initpaging(void);
void virtual_init(void);
/*
Fonction à ajouter...pour gestion mémoire virtuelle
u8* virtual_to_physical(u8 *vaddr)
pd *virtual_pd_create(void)
void virtual_pd_destroy(pd *dst)
void virtual_pd_page_remove(pd *dst, u8* vaddr)
void virtual_pd_page_add(pd *dst, u8* vaddr, u8 * paddr, u32 flags)
void virtual_range_use(pd *dst, u8 vaddr, u8 paddr, u8 len)
void virtual_range_free(pd *dst, u8 vaddr, u8 len)
void virtual_range_new(pd *dst, u8 vaddr, u8 len)
page *virtual_page_getfree(void)
void virtual_page_free(u8* vaddr)
void virtual_page_use(u8* vaddr)
void virtual_init(void)
void virtual_range_use_kernel(u8 vaddr, u8 paddr, u8 len)
void virtual_range_free_kernel(u8 vaddr, u8 len)
void virtual_range_new_kernel(u8 vaddr, u8 len)
void virtual_range_use_current(u8 vaddr, u8 paddr, u8 len)
void virtual_range_free_current(u8 vaddr, u8 len)
void virtual_range_new_current(u8 vaddr, u8 len)
*/

694
include/queue.h Normal file
View File

@ -0,0 +1,694 @@
/*-
* Copyright (c) 1991, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)queue.h 8.5 (Berkeley) 8/20/94
* $FreeBSD$
*/
#ifndef _SYS_QUEUE_H_
#define _SYS_QUEUE_H_
//#include <sys/cdefs.h>
/*
* This file defines four types of data structures: singly-linked lists,
* singly-linked tail queues, lists and tail queues.
*
* A singly-linked list is headed by a single forward pointer. The elements
* are singly linked for minimum space and pointer manipulation overhead at
* the expense of O(n) removal for arbitrary elements. New elements can be
* added to the list after an existing element or at the head of the list.
* Elements being removed from the head of the list should use the explicit
* macro for this purpose for optimum efficiency. A singly-linked list may
* only be traversed in the forward direction. Singly-linked lists are ideal
* for applications with large datasets and few or no removals or for
* implementing a LIFO queue.
*
* A singly-linked tail queue is headed by a pair of pointers, one to the
* head of the list and the other to the tail of the list. The elements are
* singly linked for minimum space and pointer manipulation overhead at the
* expense of O(n) removal for arbitrary elements. New elements can be added
* to the list after an existing element, at the head of the list, or at the
* end of the list. Elements being removed from the head of the tail queue
* should use the explicit macro for this purpose for optimum efficiency.
* A singly-linked tail queue may only be traversed in the forward direction.
* Singly-linked tail queues are ideal for applications with large datasets
* and few or no removals or for implementing a FIFO queue.
*
* A list is headed by a single forward pointer (or an array of forward
* pointers for a hash table header). The elements are doubly linked
* so that an arbitrary element can be removed without a need to
* traverse the list. New elements can be added to the list before
* or after an existing element or at the head of the list. A list
* may be traversed in either direction.
*
* A tail queue is headed by a pair of pointers, one to the head of the
* list and the other to the tail of the list. The elements are doubly
* linked so that an arbitrary element can be removed without a need to
* traverse the list. New elements can be added to the list before or
* after an existing element, at the head of the list, or at the end of
* the list. A tail queue may be traversed in either direction.
*
* For details on the use of these macros, see the queue(3) manual page.
*
*
* SLIST LIST STAILQ TAILQ
* _HEAD + + + +
* _HEAD_INITIALIZER + + + +
* _ENTRY + + + +
* _INIT + + + +
* _EMPTY + + + +
* _FIRST + + + +
* _NEXT + + + +
* _PREV - + - +
* _LAST - - + +
* _FOREACH + + + +
* _FOREACH_FROM + + + +
* _FOREACH_SAFE + + + +
* _FOREACH_FROM_SAFE + + + +
* _FOREACH_REVERSE - - - +
* _FOREACH_REVERSE_FROM - - - +
* _FOREACH_REVERSE_SAFE - - - +
* _FOREACH_REVERSE_FROM_SAFE - - - +
* _INSERT_HEAD + + + +
* _INSERT_BEFORE - + - +
* _INSERT_AFTER + + + +
* _INSERT_TAIL - - + +
* _CONCAT - - + +
* _REMOVE_AFTER + - + -
* _REMOVE_HEAD + - + -
* _REMOVE + + + +
* _SWAP + + + +
*
*/
#ifdef QUEUE_MACRO_DEBUG
/* Store the last 2 places the queue element or head was altered */
struct qm_trace {
unsigned long lastline;
unsigned long prevline;
const char *lastfile;
const char *prevfile;
};
#define TRACEBUF struct qm_trace trace;
#define TRACEBUF_INITIALIZER { __FILE__, __LINE__, NULL, 0 } ,
#define TRASHIT(x) do {(x) = (void *)-1;} while (0)
#define QMD_SAVELINK(name, link) void **name = (void *)&(link)
#define QMD_TRACE_HEAD(head) do { \
(head)->trace.prevline = (head)->trace.lastline; \
(head)->trace.prevfile = (head)->trace.lastfile; \
(head)->trace.lastline = __LINE__; \
(head)->trace.lastfile = __FILE__; \
} while (0)
#define QMD_TRACE_ELEM(elem) do { \
(elem)->trace.prevline = (elem)->trace.lastline; \
(elem)->trace.prevfile = (elem)->trace.lastfile; \
(elem)->trace.lastline = __LINE__; \
(elem)->trace.lastfile = __FILE__; \
} while (0)
#else
#define QMD_TRACE_ELEM(elem)
#define QMD_TRACE_HEAD(head)
#define QMD_SAVELINK(name, link)
#define TRACEBUF
#define TRACEBUF_INITIALIZER
#define TRASHIT(x)
#endif /* QUEUE_MACRO_DEBUG */
/*
* Singly-linked List declarations.
*/
#define SLIST_HEAD(name, type) \
struct name { \
struct type *slh_first; /* first element */ \
}
#define SLIST_HEAD_INITIALIZER(head) \
{ NULL }
#define SLIST_ENTRY(type) \
struct { \
struct type *sle_next; /* next element */ \
}
/*
* Singly-linked List functions.
*/
#define SLIST_EMPTY(head) ((head)->slh_first == NULL)
#define SLIST_FIRST(head) ((head)->slh_first)
#define SLIST_FOREACH(var, head, field) \
for ((var) = SLIST_FIRST((head)); \
(var); \
(var) = SLIST_NEXT((var), field))
#define SLIST_FOREACH_FROM(var, head, field) \
for ((var) = ((var) ? (var) : SLIST_FIRST((head))); \
(var); \
(var) = SLIST_NEXT((var), field))
#define SLIST_FOREACH_SAFE(var, head, field, tvar) \
for ((var) = SLIST_FIRST((head)); \
(var) && ((tvar) = SLIST_NEXT((var), field), 1); \
(var) = (tvar))
#define SLIST_FOREACH_FROM_SAFE(var, head, field, tvar) \
for ((var) = ((var) ? (var) : SLIST_FIRST((head))); \
(var) && ((tvar) = SLIST_NEXT((var), field), 1); \
(var) = (tvar))
#define SLIST_FOREACH_PREVPTR(var, varp, head, field) \
for ((varp) = &SLIST_FIRST((head)); \
((var) = *(varp)) != NULL; \
(varp) = &SLIST_NEXT((var), field))
#define SLIST_INIT(head) do { \
SLIST_FIRST((head)) = NULL; \
} while (0)
#define SLIST_INSERT_AFTER(slistelm, elm, field) do { \
SLIST_NEXT((elm), field) = SLIST_NEXT((slistelm), field); \
SLIST_NEXT((slistelm), field) = (elm); \
} while (0)
#define SLIST_INSERT_HEAD(head, elm, field) do { \
SLIST_NEXT((elm), field) = SLIST_FIRST((head)); \
SLIST_FIRST((head)) = (elm); \
} while (0)
#define SLIST_NEXT(elm, field) ((elm)->field.sle_next)
#define SLIST_REMOVE(head, elm, type, field) do { \
QMD_SAVELINK(oldnext, (elm)->field.sle_next); \
if (SLIST_FIRST((head)) == (elm)) { \
SLIST_REMOVE_HEAD((head), field); \
} \
else { \
struct type *curelm = SLIST_FIRST((head)); \
while (SLIST_NEXT(curelm, field) != (elm)) \
curelm = SLIST_NEXT(curelm, field); \
SLIST_REMOVE_AFTER(curelm, field); \
} \
TRASHIT(*oldnext); \
} while (0)
#define SLIST_REMOVE_AFTER(elm, field) do { \
SLIST_NEXT(elm, field) = \
SLIST_NEXT(SLIST_NEXT(elm, field), field); \
} while (0)
#define SLIST_REMOVE_HEAD(head, field) do { \
SLIST_FIRST((head)) = SLIST_NEXT(SLIST_FIRST((head)), field); \
} while (0)
#define SLIST_SWAP(head1, head2, type) do { \
struct type *swap_first = SLIST_FIRST(head1); \
SLIST_FIRST(head1) = SLIST_FIRST(head2); \
SLIST_FIRST(head2) = swap_first; \
} while (0)
/*
* Singly-linked Tail queue declarations.
*/
#define STAILQ_HEAD(name, type) \
struct name { \
struct type *stqh_first;/* first element */ \
struct type **stqh_last;/* addr of last next element */ \
}
#define STAILQ_HEAD_INITIALIZER(head) \
{ NULL, &(head).stqh_first }
#define STAILQ_ENTRY(type) \
struct { \
struct type *stqe_next; /* next element */ \
}
/*
* Singly-linked Tail queue functions.
*/
#define STAILQ_CONCAT(head1, head2) do { \
if (!STAILQ_EMPTY((head2))) { \
*(head1)->stqh_last = (head2)->stqh_first; \
(head1)->stqh_last = (head2)->stqh_last; \
STAILQ_INIT((head2)); \
} \
} while (0)
#define STAILQ_EMPTY(head) ((head)->stqh_first == NULL)
#define STAILQ_FIRST(head) ((head)->stqh_first)
#define STAILQ_FOREACH(var, head, field) \
for((var) = STAILQ_FIRST((head)); \
(var); \
(var) = STAILQ_NEXT((var), field))
#define STAILQ_FOREACH_FROM(var, head, field) \
for ((var) = ((var) ? (var) : STAILQ_FIRST((head))); \
(var); \
(var) = STAILQ_NEXT((var), field))
#define STAILQ_FOREACH_SAFE(var, head, field, tvar) \
for ((var) = STAILQ_FIRST((head)); \
(var) && ((tvar) = STAILQ_NEXT((var), field), 1); \
(var) = (tvar))
#define STAILQ_FOREACH_FROM_SAFE(var, head, field, tvar) \
for ((var) = ((var) ? (var) : STAILQ_FIRST((head))); \
(var) && ((tvar) = STAILQ_NEXT((var), field), 1); \
(var) = (tvar))
#define STAILQ_INIT(head) do { \
STAILQ_FIRST((head)) = NULL; \
(head)->stqh_last = &STAILQ_FIRST((head)); \
} while (0)
#define STAILQ_INSERT_AFTER(head, tqelm, elm, field) do { \
if ((STAILQ_NEXT((elm), field) = STAILQ_NEXT((tqelm), field)) == NULL)\
(head)->stqh_last = &STAILQ_NEXT((elm), field); \
STAILQ_NEXT((tqelm), field) = (elm); \
} while (0)
#define STAILQ_INSERT_HEAD(head, elm, field) do { \
if ((STAILQ_NEXT((elm), field) = STAILQ_FIRST((head))) == NULL) \
(head)->stqh_last = &STAILQ_NEXT((elm), field); \
STAILQ_FIRST((head)) = (elm); \
} while (0)
#define STAILQ_INSERT_TAIL(head, elm, field) do { \
STAILQ_NEXT((elm), field) = NULL; \
*(head)->stqh_last = (elm); \
(head)->stqh_last = &STAILQ_NEXT((elm), field); \
} while (0)
#define STAILQ_LAST(head, type, field) \
(STAILQ_EMPTY((head)) ? NULL : \
__containerof((head)->stqh_last, struct type, field.stqe_next))
#define STAILQ_NEXT(elm, field) ((elm)->field.stqe_next)
#define STAILQ_REMOVE(head, elm, type, field) do { \
QMD_SAVELINK(oldnext, (elm)->field.stqe_next); \
if (STAILQ_FIRST((head)) == (elm)) { \
STAILQ_REMOVE_HEAD((head), field); \
} \
else { \
struct type *curelm = STAILQ_FIRST((head)); \
while (STAILQ_NEXT(curelm, field) != (elm)) \
curelm = STAILQ_NEXT(curelm, field); \
STAILQ_REMOVE_AFTER(head, curelm, field); \
} \
TRASHIT(*oldnext); \
} while (0)
#define STAILQ_REMOVE_AFTER(head, elm, field) do { \
if ((STAILQ_NEXT(elm, field) = \
STAILQ_NEXT(STAILQ_NEXT(elm, field), field)) == NULL) \
(head)->stqh_last = &STAILQ_NEXT((elm), field); \
} while (0)
#define STAILQ_REMOVE_HEAD(head, field) do { \
if ((STAILQ_FIRST((head)) = \
STAILQ_NEXT(STAILQ_FIRST((head)), field)) == NULL) \
(head)->stqh_last = &STAILQ_FIRST((head)); \
} while (0)
#define STAILQ_SWAP(head1, head2, type) do { \
struct type *swap_first = STAILQ_FIRST(head1); \
struct type **swap_last = (head1)->stqh_last; \
STAILQ_FIRST(head1) = STAILQ_FIRST(head2); \
(head1)->stqh_last = (head2)->stqh_last; \
STAILQ_FIRST(head2) = swap_first; \
(head2)->stqh_last = swap_last; \
if (STAILQ_EMPTY(head1)) \
(head1)->stqh_last = &STAILQ_FIRST(head1); \
if (STAILQ_EMPTY(head2)) \
(head2)->stqh_last = &STAILQ_FIRST(head2); \
} while (0)
/*
* List declarations.
*/
#define LIST_HEAD(name, type) \
struct name { \
struct type *lh_first; /* first element */ \
}
#define LIST_HEAD_INITIALIZER(head) \
{ NULL }
#define LIST_ENTRY(type) \
struct { \
struct type *le_next; /* next element */ \
struct type **le_prev; /* address of previous next element */ \
}
/*
* List functions.
*/
#if (defined(_KERNEL) && defined(INVARIANTS))
#define QMD_LIST_CHECK_HEAD(head, field) do { \
if (LIST_FIRST((head)) != NULL && \
LIST_FIRST((head))->field.le_prev != \
&LIST_FIRST((head))) \
panic("Bad list head %p first->prev != head", (head)); \
} while (0)
#define QMD_LIST_CHECK_NEXT(elm, field) do { \
if (LIST_NEXT((elm), field) != NULL && \
LIST_NEXT((elm), field)->field.le_prev != \
&((elm)->field.le_next)) \
panic("Bad link elm %p next->prev != elm", (elm)); \
} while (0)
#define QMD_LIST_CHECK_PREV(elm, field) do { \
if (*(elm)->field.le_prev != (elm)) \
panic("Bad link elm %p prev->next != elm", (elm)); \
} while (0)
#else
#define QMD_LIST_CHECK_HEAD(head, field)
#define QMD_LIST_CHECK_NEXT(elm, field)
#define QMD_LIST_CHECK_PREV(elm, field)
#endif /* (_KERNEL && INVARIANTS) */
#define LIST_EMPTY(head) ((head)->lh_first == NULL)
#define LIST_FIRST(head) ((head)->lh_first)
#define LIST_FOREACH(var, head, field) \
for ((var) = LIST_FIRST((head)); \
(var); \
(var) = LIST_NEXT((var), field))
#define LIST_FOREACH_FROM(var, head, field) \
for ((var) = ((var) ? (var) : LIST_FIRST((head))); \
(var); \
(var) = LIST_NEXT((var), field))
#define LIST_FOREACH_SAFE(var, head, field, tvar) \
for ((var) = LIST_FIRST((head)); \
(var) && ((tvar) = LIST_NEXT((var), field), 1); \
(var) = (tvar))
#define LIST_FOREACH_FROM_SAFE(var, head, field, tvar) \
for ((var) = ((var) ? (var) : LIST_FIRST((head))); \
(var) && ((tvar) = LIST_NEXT((var), field), 1); \
(var) = (tvar))
#define LIST_INIT(head) do { \
LIST_FIRST((head)) = NULL; \
} while (0)
#define LIST_INSERT_AFTER(listelm, elm, field) do { \
QMD_LIST_CHECK_NEXT(listelm, field); \
if ((LIST_NEXT((elm), field) = LIST_NEXT((listelm), field)) != NULL)\
LIST_NEXT((listelm), field)->field.le_prev = \
&LIST_NEXT((elm), field); \
LIST_NEXT((listelm), field) = (elm); \
(elm)->field.le_prev = &LIST_NEXT((listelm), field); \
} while (0)
#define LIST_INSERT_BEFORE(listelm, elm, field) do { \
QMD_LIST_CHECK_PREV(listelm, field); \
(elm)->field.le_prev = (listelm)->field.le_prev; \
LIST_NEXT((elm), field) = (listelm); \
*(listelm)->field.le_prev = (elm); \
(listelm)->field.le_prev = &LIST_NEXT((elm), field); \
} while (0)
#define LIST_INSERT_HEAD(head, elm, field) do { \
QMD_LIST_CHECK_HEAD((head), field); \
if ((LIST_NEXT((elm), field) = LIST_FIRST((head))) != NULL) \
LIST_FIRST((head))->field.le_prev = &LIST_NEXT((elm), field);\
LIST_FIRST((head)) = (elm); \
(elm)->field.le_prev = &LIST_FIRST((head)); \
} while (0)
#define LIST_NEXT(elm, field) ((elm)->field.le_next)
#define LIST_PREV(elm, head, type, field) \
((elm)->field.le_prev == &LIST_FIRST((head)) ? NULL : \
__containerof((elm)->field.le_prev, struct type, field.le_next))
#define LIST_REMOVE(elm, field) do { \
QMD_SAVELINK(oldnext, (elm)->field.le_next); \
QMD_SAVELINK(oldprev, (elm)->field.le_prev); \
QMD_LIST_CHECK_NEXT(elm, field); \
QMD_LIST_CHECK_PREV(elm, field); \
if (LIST_NEXT((elm), field) != NULL) \
LIST_NEXT((elm), field)->field.le_prev = \
(elm)->field.le_prev; \
*(elm)->field.le_prev = LIST_NEXT((elm), field); \
TRASHIT(*oldnext); \
TRASHIT(*oldprev); \
} while (0)
#define LIST_SWAP(head1, head2, type, field) do { \
struct type *swap_tmp = LIST_FIRST((head1)); \
LIST_FIRST((head1)) = LIST_FIRST((head2)); \
LIST_FIRST((head2)) = swap_tmp; \
if ((swap_tmp = LIST_FIRST((head1))) != NULL) \
swap_tmp->field.le_prev = &LIST_FIRST((head1)); \
if ((swap_tmp = LIST_FIRST((head2))) != NULL) \
swap_tmp->field.le_prev = &LIST_FIRST((head2)); \
} while (0)
/*
* Tail queue declarations.
*/
#define TAILQ_HEAD(name, type) \
struct name { \
struct type *tqh_first; /* first element */ \
struct type **tqh_last; /* addr of last next element */ \
TRACEBUF \
}
#define TAILQ_HEAD_INITIALIZER(head) \
{ NULL, &(head).tqh_first, TRACEBUF_INITIALIZER }
#define TAILQ_ENTRY(type) \
struct { \
struct type *tqe_next; /* next element */ \
struct type **tqe_prev; /* address of previous next element */ \
TRACEBUF \
}
/*
* Tail queue functions.
*/
#if (defined(_KERNEL) && defined(INVARIANTS))
#define QMD_TAILQ_CHECK_HEAD(head, field) do { \
if (!TAILQ_EMPTY(head) && \
TAILQ_FIRST((head))->field.tqe_prev != \
&TAILQ_FIRST((head))) \
panic("Bad tailq head %p first->prev != head", (head)); \
} while (0)
#define QMD_TAILQ_CHECK_TAIL(head, field) do { \
if (*(head)->tqh_last != NULL) \
panic("Bad tailq NEXT(%p->tqh_last) != NULL", (head)); \
} while (0)
#define QMD_TAILQ_CHECK_NEXT(elm, field) do { \
if (TAILQ_NEXT((elm), field) != NULL && \
TAILQ_NEXT((elm), field)->field.tqe_prev != \
&((elm)->field.tqe_next)) \
panic("Bad link elm %p next->prev != elm", (elm)); \
} while (0)
#define QMD_TAILQ_CHECK_PREV(elm, field) do { \
if (*(elm)->field.tqe_prev != (elm)) \
panic("Bad link elm %p prev->next != elm", (elm)); \
} while (0)
#else
#define QMD_TAILQ_CHECK_HEAD(head, field)
#define QMD_TAILQ_CHECK_TAIL(head, headname)
#define QMD_TAILQ_CHECK_NEXT(elm, field)
#define QMD_TAILQ_CHECK_PREV(elm, field)
#endif /* (_KERNEL && INVARIANTS) */
#define TAILQ_CONCAT(head1, head2, field) do { \
if (!TAILQ_EMPTY(head2)) { \
*(head1)->tqh_last = (head2)->tqh_first; \
(head2)->tqh_first->field.tqe_prev = (head1)->tqh_last; \
(head1)->tqh_last = (head2)->tqh_last; \
TAILQ_INIT((head2)); \
QMD_TRACE_HEAD(head1); \
QMD_TRACE_HEAD(head2); \
} \
} while (0)
#define TAILQ_EMPTY(head) ((head)->tqh_first == NULL)
#define TAILQ_FIRST(head) ((head)->tqh_first)
#define TAILQ_FOREACH(var, head, field) \
for ((var) = TAILQ_FIRST((head)); \
(var); \
(var) = TAILQ_NEXT((var), field))
#define TAILQ_FOREACH_FROM(var, head, field) \
for ((var) = ((var) ? (var) : TAILQ_FIRST((head))); \
(var); \
(var) = TAILQ_NEXT((var), field))
#define TAILQ_FOREACH_SAFE(var, head, field, tvar) \
for ((var) = TAILQ_FIRST((head)); \
(var) && ((tvar) = TAILQ_NEXT((var), field), 1); \
(var) = (tvar))
#define TAILQ_FOREACH_FROM_SAFE(var, head, field, tvar) \
for ((var) = ((var) ? (var) : TAILQ_FIRST((head))); \
(var) && ((tvar) = TAILQ_NEXT((var), field), 1); \
(var) = (tvar))
#define TAILQ_FOREACH_REVERSE(var, head, headname, field) \
for ((var) = TAILQ_LAST((head), headname); \
(var); \
(var) = TAILQ_PREV((var), headname, field))
#define TAILQ_FOREACH_REVERSE_FROM(var, head, headname, field) \
for ((var) = ((var) ? (var) : TAILQ_LAST((head), headname)); \
(var); \
(var) = TAILQ_PREV((var), headname, field))
#define TAILQ_FOREACH_REVERSE_SAFE(var, head, headname, field, tvar) \
for ((var) = TAILQ_LAST((head), headname); \
(var) && ((tvar) = TAILQ_PREV((var), headname, field), 1); \
(var) = (tvar))
#define TAILQ_FOREACH_REVERSE_FROM_SAFE(var, head, headname, field, tvar) \
for ((var) = ((var) ? (var) : TAILQ_LAST((head), headname)); \
(var) && ((tvar) = TAILQ_PREV((var), headname, field), 1); \
(var) = (tvar))
#define TAILQ_INIT(head) do { \
TAILQ_FIRST((head)) = NULL; \
(head)->tqh_last = &TAILQ_FIRST((head)); \
QMD_TRACE_HEAD(head); \
} while (0)
#define TAILQ_INSERT_AFTER(head, listelm, elm, field) do { \
QMD_TAILQ_CHECK_NEXT(listelm, field); \
if ((TAILQ_NEXT((elm), field) = TAILQ_NEXT((listelm), field)) != NULL)\
TAILQ_NEXT((elm), field)->field.tqe_prev = \
&TAILQ_NEXT((elm), field); \
else { \
(head)->tqh_last = &TAILQ_NEXT((elm), field); \
QMD_TRACE_HEAD(head); \
} \
TAILQ_NEXT((listelm), field) = (elm); \
(elm)->field.tqe_prev = &TAILQ_NEXT((listelm), field); \
QMD_TRACE_ELEM(&(elm)->field); \
QMD_TRACE_ELEM(&listelm->field); \
} while (0)
#define TAILQ_INSERT_BEFORE(listelm, elm, field) do { \
QMD_TAILQ_CHECK_PREV(listelm, field); \
(elm)->field.tqe_prev = (listelm)->field.tqe_prev; \
TAILQ_NEXT((elm), field) = (listelm); \
*(listelm)->field.tqe_prev = (elm); \
(listelm)->field.tqe_prev = &TAILQ_NEXT((elm), field); \
QMD_TRACE_ELEM(&(elm)->field); \
QMD_TRACE_ELEM(&listelm->field); \
} while (0)
#define TAILQ_INSERT_HEAD(head, elm, field) do { \
QMD_TAILQ_CHECK_HEAD(head, field); \
if ((TAILQ_NEXT((elm), field) = TAILQ_FIRST((head))) != NULL) \
TAILQ_FIRST((head))->field.tqe_prev = \
&TAILQ_NEXT((elm), field); \
else \
(head)->tqh_last = &TAILQ_NEXT((elm), field); \
TAILQ_FIRST((head)) = (elm); \
(elm)->field.tqe_prev = &TAILQ_FIRST((head)); \
QMD_TRACE_HEAD(head); \
QMD_TRACE_ELEM(&(elm)->field); \
} while (0)
#define TAILQ_INSERT_TAIL(head, elm, field) do { \
QMD_TAILQ_CHECK_TAIL(head, field); \
TAILQ_NEXT((elm), field) = NULL; \
(elm)->field.tqe_prev = (head)->tqh_last; \
*(head)->tqh_last = (elm); \
(head)->tqh_last = &TAILQ_NEXT((elm), field); \
QMD_TRACE_HEAD(head); \
QMD_TRACE_ELEM(&(elm)->field); \
} while (0)
#define TAILQ_LAST(head, headname) \
(*(((struct headname *)((head)->tqh_last))->tqh_last))
#define TAILQ_NEXT(elm, field) ((elm)->field.tqe_next)
#define TAILQ_PREV(elm, headname, field) \
(*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))
#define TAILQ_REMOVE(head, elm, field) do { \
QMD_SAVELINK(oldnext, (elm)->field.tqe_next); \
QMD_SAVELINK(oldprev, (elm)->field.tqe_prev); \
QMD_TAILQ_CHECK_NEXT(elm, field); \
QMD_TAILQ_CHECK_PREV(elm, field); \
if ((TAILQ_NEXT((elm), field)) != NULL) \
TAILQ_NEXT((elm), field)->field.tqe_prev = \
(elm)->field.tqe_prev; \
else { \
(head)->tqh_last = (elm)->field.tqe_prev; \
QMD_TRACE_HEAD(head); \
} \
*(elm)->field.tqe_prev = TAILQ_NEXT((elm), field); \
TRASHIT(*oldnext); \
TRASHIT(*oldprev); \
QMD_TRACE_ELEM(&(elm)->field); \
} while (0)
#define TAILQ_SWAP(head1, head2, type, field) do { \
struct type *swap_first = (head1)->tqh_first; \
struct type **swap_last = (head1)->tqh_last; \
(head1)->tqh_first = (head2)->tqh_first; \
(head1)->tqh_last = (head2)->tqh_last; \
(head2)->tqh_first = swap_first; \
(head2)->tqh_last = swap_last; \
if ((swap_first = (head1)->tqh_first) != NULL) \
swap_first->field.tqe_prev = &(head1)->tqh_first; \
else \
(head1)->tqh_last = &(head1)->tqh_first; \
if ((swap_first = (head2)->tqh_first) != NULL) \
swap_first->field.tqe_prev = &(head2)->tqh_first; \
else \
(head2)->tqh_last = &(head2)->tqh_first; \
} while (0)
#endif /* !_SYS_QUEUE_H_ */

View File

@ -4,16 +4,87 @@
#include "types.h" #include "types.h"
#include "memory.h" #include "memory.h"
#include "multiboot2.h" #include "multiboot2.h"
#include "queue.h"
#include "asm.h"
static u32 *pd0 = (u32 *) KERNEL_PGD_ADDR; /* page directory */ static pd *kerneldirectory=NULL; /* pointeur vers le page directory noyau */
static u8 *pg0 = (u8 *) 0; /* page 0 */ static u8 *kernelheap=NULL; /* pointeur vers le heap noyau */
static u8 *pg1 = (u8 *) (PAGESIZE*PAGENUMBER); /* page 1 */ static u8 bitmap[MAXMEMPAGE / 8]; /* bitmap */
static u8 bitmap[MAXMEMPAGE / 8]; static vrange_t freepages;
/*******************************************************************************/ /*******************************************************************************/
/* Retourne la taille de la mémoire (selon grub) */ /* Erreur fatale */
void panic(u8 *string)
{
printf("KERNEL PANIC: %s\r\nSysteme arrete...\n");
halt();
}
u64 getmemorysize() /*******************************************************************************/
/* Alloue plusieurs pages virtuelles (size) pour le heap du noyau */
tmalloc *mallocpage(u8 size)
{
tmalloc *chunk;
u8 *paddr;
u32 realsize=size * PAGESIZE;
if ((kernelheap - KERNEL_HEAP + realsize) > MAXHEAPSIZE)
panic("Plus de memoire noyau heap disponible a allouer !\n");
chunk = (tmalloc *) kernelheap;
virtual_range_new_kernel(kernelheap, realsize);
chunk->size = realsize;
chunk->used = 0;
return chunk;
}
/*******************************************************************************/
/* Alloue de la mémoire virtuelle au noyau de façon dynamique (heap) */
void *vmalloc(u32 size)
{
u32 realsize;
tmalloc *chunk, *new;
realsize = sizeof(tmalloc) + size;
if (realsize < MALLOC_MINIMUM)
realsize = MALLOC_MINIMUM;
chunk = KERNEL_HEAP;
while (chunk->used || chunk->size < realsize) {
if (chunk->size == 0)
panic(sprintf("Element du heap %x defectueux avec une taille nulle (heap %x) !",chunk, kernelheap));
chunk = chunk + chunk->size;
if (chunk == (tmalloc *) kernelheap)
mallocpage((realsize / PAGESIZE) + 1);
else if (chunk > (tmalloc *) kernelheap)
panic (sprintf("Element du heap %x depassant la limite %x !",chunk, kernelheap));
}
if (chunk->size - realsize < MALLOC_MINIMUM)
chunk->used = 1;
else {
new = chunk + realsize;
new->size = chunk->size - realsize;
new->used = 0;
chunk->size = realsize;
chunk->used = 1;
}
return (u8 *) chunk + sizeof(tmalloc);
}
/*******************************************************************************/
/* Libère de la mémoire virtuelle depuis le heap noyau */
void vmfree(void *vaddr)
{
tmalloc *chunk, *new;
chunk = (tmalloc *) (vaddr - sizeof(tmalloc));
chunk->used = 0;
while ((new = (tmalloc *) chunk + chunk->size) && new < (tmalloc *) kernelheap && new->used == 0)
chunk->size += new->size;
}
/*******************************************************************************/
/* Retourne la taille de la mémoire physique (selon grub) */
u64 physical_getmemorysize()
{ {
u64 maxaddr=0; u64 maxaddr=0;
struct multiboot_tag_mmap *tag=getgrubinfo_mem(); struct multiboot_tag_mmap *tag=getgrubinfo_mem();
@ -26,59 +97,59 @@ u64 getmemorysize()
} }
/*******************************************************************************/ /*******************************************************************************/
/* Retourne que la page actuelle est occupée */ /* Retourne que la page physique actuelle est occupée */
void bitmap_page_use(page) void physical_page_use(u32 page)
{ {
bitmap[((u32) page)/8] |= (1 << (((u32) page)%8)); bitmap[(page/8)] |= (1 << (page%8));
} }
/*******************************************************************************/ /*******************************************************************************/
/* Retourne que la page actuelle est libre */ /* Retourne que la page physique actuelle est libre */
void bitmap_page_free(page) void physical_page_free(u32 page)
{ {
bitmap[((u32) page)/8] &= ~(1 << (((u32) page)%8)); bitmap[(page/8)] &= ~(1 << (page%8));
} }
/*******************************************************************************/ /*******************************************************************************/
/* Reserve un espace mémoire dans le bitmap */ /* Reserve un espace mémoire physique dans le bitmap */
void bitmap_page_setused(u64 addr,u64 len) void physical_range_use(u64 addr,u64 len)
{ {
u32 nbpage=TOPAGE(len); u32 nbpage=TOPAGE(len);
u32 pagesrc=TOPAGE(addr); u32 pagesrc=TOPAGE(addr);
if (len & 0b1111111111 > 0) if (len & 0b1111111111 > 0)
nbpage++; nbpage++;
if (addr>0xFFFFFFFF) if (addr>=MAXMEMSIZE)
return; return;
if (len>0xFFFFFFFF) if (addr+len>=MAXMEMSIZE)
len=0xFFFFFFFF; len=MAXMEMSIZE-addr-1;
for(u32 page=pagesrc;page<pagesrc+nbpage;page++) for(u32 page=pagesrc;page<pagesrc+nbpage;page++)
bitmap_page_use(page); physical_page_use(page);
} }
/*******************************************************************************/ /*******************************************************************************/
/* Indique un espace mémoire libre dans le bitmap */ /* Libère un espace mémoire physique dans le bitmap */
void bitmap_page_setfree(u64 addr,u64 len) void physical_range_free(u64 addr,u64 len)
{ {
u32 nbpage=TOPAGE(len); u32 nbpage=TOPAGE(len);
u32 pagesrc=TOPAGE(addr); u32 pagesrc=TOPAGE(addr);
if (len & 0b1111111111 > 0) if (len & 0b1111111111 > 0)
nbpage++; nbpage++;
if (addr>0xFFFFFFFF) if (addr>=MAXMEMSIZE)
return; return;
if (len>0xFFFFFFFF) if (addr+len>=MAXMEMSIZE)
len=0xFFFFFFFF; len=MAXMEMSIZE-addr-1;
for(u32 page=pagesrc;page<pagesrc+nbpage;page++) for(u32 page=pagesrc;page<pagesrc+nbpage;page++)
bitmap_page_free(page); physical_page_free(page);
} }
/*******************************************************************************/ /*******************************************************************************/
/* Retourne une page libre */ /* Retourne une page physique libre */
u8* bitmap_page_getonefree(void) u8* physical_page_getfree(void)
{ {
u8 byte, bit; u8 byte, bit;
u32 page = 0; u32 page = 0;
@ -87,7 +158,7 @@ u8* bitmap_page_getonefree(void)
for (bit = 0; bit < 8; bit++) for (bit = 0; bit < 8; bit++)
if (!(bitmap[byte] & (1 << bit))) { if (!(bitmap[byte] & (1 << bit))) {
page = 8 * byte + bit; page = 8 * byte + bit;
bitmap_page_use(page); physical_page_use(page);
return (u8 *) (page * PAGESIZE); return (u8 *) (page * PAGESIZE);
} }
return NULL; return NULL;
@ -109,9 +180,9 @@ u64 getmemoryfree(void)
} }
/*******************************************************************************/ /*******************************************************************************/
/* Initialisation du bitmap */ /* Initialisation du bitmap pour la gestion physique de la mémoire */
void bitmap_init() void physical_init(void)
{ {
u64 page; u64 page;
for (page=0; page < sizeof(bitmap); page++) for (page=0; page < sizeof(bitmap); page++)
@ -121,10 +192,76 @@ void bitmap_init()
for (mmap = ((struct multiboot_tag_mmap *) tag)->entries;(u8 *) mmap < (u8 *) tag + tag->size; mmap = (multiboot_memory_map_t *) for (mmap = ((struct multiboot_tag_mmap *) tag)->entries;(u8 *) mmap < (u8 *) tag + tag->size; mmap = (multiboot_memory_map_t *)
((unsigned long) mmap + ((struct multiboot_tag_mmap *) tag)->entry_size)) ((unsigned long) mmap + ((struct multiboot_tag_mmap *) tag)->entry_size))
if (mmap->type==1) if (mmap->type==1)
bitmap_page_setfree(mmap->addr,mmap->len); physical_range_free(mmap->addr,mmap->len);
else else
bitmap_page_setused(mmap->addr,mmap->len); physical_range_use(mmap->addr,mmap->len);
bitmap_page_setused(0x0,KERNELSIZE); //physical_range_use(0x0,KERNELSIZE);
}
/*******************************************************************************/
/* Allocation de page virtuelle de mémoire */
page *virtual_page_getfree(void)
{
page *pg;
vrange *vpages;
u8 *vaddr, *paddr;
paddr = physical_page_getfree();
if (paddr == NULL)
panic ("Plus de memoire physique disponible !\n");
if (TAILQ_EMPTY(&freepages)
panic ("Plus de place disponible dans la reserve de page !\n");
vpages = TAILQ_FIRST(&freepages);
vaddr = vpages->vaddrlow;
vpages->vaddrlow += PAGESIZE;
if (pages->vaddrlow == pages->vaddrhigh) {
TAILQ_REMOVE(&freepages, vpages, tailq);
vfree(vpages);
}
pd0_add_page(v_addr, p_addr, 0);*/
virtual_pd_page_add(pd,vaddr,paddr, 0)
pg = (page*) vmalloc(sizeof(page));
pg->vaddr = vaddr;
pg->paddr = paddr;
return pg;
}
/*******************************************************************************/
/* Création d'un directory pour la gestion virtuelle de la mémoire */
pd *virtual_pd_create()
{
pd *new;
u32 *pdir,pd0;
u32 i;
pd = (pd *) vmalloc(sizeof(pd));
pd->addr = virtual_page_getfree();
if (kerneldirectory!=NULL)
{
pdir = (u32 *) pd->base->vaddr;
pd0 = (u32 *) kerneldirectory->base->vaddr;
for (i = 0; i < 256; i++)
pdir[i] = pd0[i];
for (i = 256; i < 1023; i++)
pdir[i] = 0;
pdir[1023] = ((u32) pd->base->p_addr | (PG_PRESENT | PG_WRITE));
}
TAILQ_INIT(&pd->addr);
return pd;
}
}
/*******************************************************************************/
/* Initialisation d'une STAILQ pour la gestion virtuelle de la mémoire */
void virtual_init(void)
{
kernelheap = (u8 *) KERNEL_HEAP;
vrange *vpages = (vrange*) vmalloc(sizeof(vrange));
vpages->vaddrlow = (u8 *) KERNEL_HEAP;
vpages->vaddrhigh = (u8 *) KERNEL_HEAP+MAXHEAPSIZE;
TAILQ_INIT(&freepages);
TAILQ_INSERT_TAIL(&freepages, vpages, tailq);
kerneldirectory=virtual_pd_create();
virtual_range_use_kernel(0x00000000, 0x00000000, KERNELSIZE);
} }
/*******************************************************************************/ /*******************************************************************************/
@ -132,22 +269,16 @@ void bitmap_init()
void initpaging(void) void initpaging(void)
{ {
u16 i; physical_init();
pd0[0] = ((u32) pg0 | (PAGE_PRESENT | PAGE_WRITE | PAGE_4MB)); virtual_init();
pd0[1] = ((u32) pg1 | (PAGE_PRESENT | PAGE_WRITE | PAGE_4MB)); asm("mov %[directory_addr], %%eax \n \
for (i = 2; i < 1023; i++)
pd0[i] = ((u32) pg1 + PAGESIZE * i) | (PAGE_PRESENT | PAGE_WRITE);
pd0[1023] = ((u32) pd0 | (PAGE_PRESENT | PAGE_WRITE));
asm("mov %[pd0_addr], %%eax \n \
mov %%eax, %%cr3 \n \ mov %%eax, %%cr3 \n \
mov %%cr4, %%eax \n \ mov %%cr4, %%eax \n \
or $0x00000010, %%eax \n \ or $0x00000010, %%eax \n \
mov %%eax, %%cr4 \n \ mov %%eax, %%cr4 \n \
mov %%cr0, %%eax \n \ mov %%cr0, %%eax \n \
or $0x80000001, %%eax \n \ or $0x80000001, %%eax \n \
mov %%eax, %%cr0"::[pd0_addr]"m"(pd0)); mov %%eax, %%cr0"::[directory_addr]"m"(kerneldirectory->addr));
} }
/*******************************************************************************/ /*******************************************************************************/

View File

@ -46,11 +46,11 @@ int main(u32 magic, u32 addr)
{ {
cli(); cli();
if (magic == MULTIBOOT2_BOOTLOADER_MAGIC) initmultiboot(addr); if (magic == MULTIBOOT2_BOOTLOADER_MAGIC) initmultiboot(addr);
initdriver(); initdriver();
registerdriver(&vgafonctions); registerdriver(&vgafonctions);
registerdriver(&vesafonctions); registerdriver(&vesafonctions);
apply_bestdriver(); apply_bestdriver();
changemode(0x1); changemode(0x1);
/* Efface l'ecran */ /* Efface l'ecran */
print("\033[2J\r\n\000"); print("\033[2J\r\n\000");
@ -68,9 +68,8 @@ int main(u32 magic, u32 addr)
inittr(); inittr();
ok(); ok();
print("\033[37m\033[0m -Initilisation de la pagination (PAGING)"); print("\033[37m\033[0m -Initilisation de la pagination (PAGING)");
bitmap_init(); initpaging();
//initpaging();
ok(); ok();
print("\033[37m\033[0m -Initilisation des interruptions (IDT/PIC)"); print("\033[37m\033[0m -Initilisation des interruptions (IDT/PIC)");
@ -103,6 +102,6 @@ int main(u32 magic, u32 addr)
ok(); ok();
retry: retry:
sti(); sti();
shell(); shell();
} }