cos2000v2/lib/math.c

313 lines
8.3 KiB
C

/*******************************************************************************/
/* COS2000 - Compatible Operating System - LGPL v3 - Hordé Nicolas */
/* */
#include "types.h"
#include "timer.h"
#include "math.h"
/*******************************************************************************/
/* Calcule un checksum 32 bits */
u32 crc32(u32 inCrc32, u8 *buf, u32 size)
{
static const u32 crcTable[256] = {
0x00000000,0x77073096,0xEE0E612C,0x990951BA,0x076DC419,0x706AF48F,0xE963A535,
0x9E6495A3,0x0EDB8832,0x79DCB8A4,0xE0D5E91E,0x97D2D988,0x09B64C2B,0x7EB17CBD,
0xE7B82D07,0x90BF1D91,0x1DB71064,0x6AB020F2,0xF3B97148,0x84BE41DE,0x1ADAD47D,
0x6DDDE4EB,0xF4D4B551,0x83D385C7,0x136C9856,0x646BA8C0,0xFD62F97A,0x8A65C9EC,
0x14015C4F,0x63066CD9,0xFA0F3D63,0x8D080DF5,0x3B6E20C8,0x4C69105E,0xD56041E4,
0xA2677172,0x3C03E4D1,0x4B04D447,0xD20D85FD,0xA50AB56B,0x35B5A8FA,0x42B2986C,
0xDBBBC9D6,0xACBCF940,0x32D86CE3,0x45DF5C75,0xDCD60DCF,0xABD13D59,0x26D930AC,
0x51DE003A,0xC8D75180,0xBFD06116,0x21B4F4B5,0x56B3C423,0xCFBA9599,0xB8BDA50F,
0x2802B89E,0x5F058808,0xC60CD9B2,0xB10BE924,0x2F6F7C87,0x58684C11,0xC1611DAB,
0xB6662D3D,0x76DC4190,0x01DB7106,0x98D220BC,0xEFD5102A,0x71B18589,0x06B6B51F,
0x9FBFE4A5,0xE8B8D433,0x7807C9A2,0x0F00F934,0x9609A88E,0xE10E9818,0x7F6A0DBB,
0x086D3D2D,0x91646C97,0xE6635C01,0x6B6B51F4,0x1C6C6162,0x856530D8,0xF262004E,
0x6C0695ED,0x1B01A57B,0x8208F4C1,0xF50FC457,0x65B0D9C6,0x12B7E950,0x8BBEB8EA,
0xFCB9887C,0x62DD1DDF,0x15DA2D49,0x8CD37CF3,0xFBD44C65,0x4DB26158,0x3AB551CE,
0xA3BC0074,0xD4BB30E2,0x4ADFA541,0x3DD895D7,0xA4D1C46D,0xD3D6F4FB,0x4369E96A,
0x346ED9FC,0xAD678846,0xDA60B8D0,0x44042D73,0x33031DE5,0xAA0A4C5F,0xDD0D7CC9,
0x5005713C,0x270241AA,0xBE0B1010,0xC90C2086,0x5768B525,0x206F85B3,0xB966D409,
0xCE61E49F,0x5EDEF90E,0x29D9C998,0xB0D09822,0xC7D7A8B4,0x59B33D17,0x2EB40D81,
0xB7BD5C3B,0xC0BA6CAD,0xEDB88320,0x9ABFB3B6,0x03B6E20C,0x74B1D29A,0xEAD54739,
0x9DD277AF,0x04DB2615,0x73DC1683,0xE3630B12,0x94643B84,0x0D6D6A3E,0x7A6A5AA8,
0xE40ECF0B,0x9309FF9D,0x0A00AE27,0x7D079EB1,0xF00F9344,0x8708A3D2,0x1E01F268,
0x6906C2FE,0xF762575D,0x806567CB,0x196C3671,0x6E6B06E7,0xFED41B76,0x89D32BE0,
0x10DA7A5A,0x67DD4ACC,0xF9B9DF6F,0x8EBEEFF9,0x17B7BE43,0x60B08ED5,0xD6D6A3E8,
0xA1D1937E,0x38D8C2C4,0x4FDFF252,0xD1BB67F1,0xA6BC5767,0x3FB506DD,0x48B2364B,
0xD80D2BDA,0xAF0A1B4C,0x36034AF6,0x41047A60,0xDF60EFC3,0xA867DF55,0x316E8EEF,
0x4669BE79,0xCB61B38C,0xBC66831A,0x256FD2A0,0x5268E236,0xCC0C7795,0xBB0B4703,
0x220216B9,0x5505262F,0xC5BA3BBE,0xB2BD0B28,0x2BB45A92,0x5CB36A04,0xC2D7FFA7,
0xB5D0CF31,0x2CD99E8B,0x5BDEAE1D,0x9B64C2B0,0xEC63F226,0x756AA39C,0x026D930A,
0x9C0906A9,0xEB0E363F,0x72076785,0x05005713,0x95BF4A82,0xE2B87A14,0x7BB12BAE,
0x0CB61B38,0x92D28E9B,0xE5D5BE0D,0x7CDCEFB7,0x0BDBDF21,0x86D3D2D4,0xF1D4E242,
0x68DDB3F8,0x1FDA836E,0x81BE16CD,0xF6B9265B,0x6FB077E1,0x18B74777,0x88085AE6,
0xFF0F6A70,0x66063BCA,0x11010B5C,0x8F659EFF,0xF862AE69,0x616BFFD3,0x166CCF45,
0xA00AE278,0xD70DD2EE,0x4E048354,0x3903B3C2,0xA7672661,0xD06016F7,0x4969474D,
0x3E6E77DB,0xAED16A4A,0xD9D65ADC,0x40DF0B66,0x37D83BF0,0xA9BCAE53,0xDEBB9EC5,
0x47B2CF7F,0x30B5FFE9,0xBDBDF21C,0xCABAC28A,0x53B39330,0x24B4A3A6,0xBAD03605,
0xCDD70693,0x54DE5729,0x23D967BF,0xB3667A2E,0xC4614AB8,0x5D681B02,0x2A6F2B94,
0xB40BBE37,0xC30C8EA1,0x5A05DF1B,0x2D02EF8D };
u32 crc32;
u8 *byteBuf;
u32 i;
crc32 = inCrc32 ^ 0xFFFFFFFF;
byteBuf = (u8*) buf;
for (i=0; i < size; i++) {
crc32 = (crc32 >> 8) ^ crcTable[ (crc32 ^ byteBuf[i]) & 0xFF ];
}
return( crc32 ^ 0xFFFFFFFF );
}
/*******************************************************************************/
/* Arithmétique 64 bits */
unsigned long long __udivdi3(unsigned long long num,
unsigned long long den)
{
unsigned long long quot, qbit;
quot = 0;
qbit = 1;
if (den == 0)
{
return 0;
}
while ((long long) den >= 0)
{
den <<= 1;
qbit <<= 1;
}
while (qbit)
{
if (den <= num)
{
num -= den;
quot += qbit;
}
den >>= 1;
qbit >>= 1;
}
return quot;
}
unsigned long long __umoddi3(unsigned long long n, unsigned long long d)
{
return n - d * __udivdi3(n, d);
}
/******************************************************************************/
/* Fonctions qui retournent le sinus et cosinus */
double cos(double x)
{
if (x < 0.0)
x = -x;
while (M_PI < x)
x -= M_2_PI;
double result =
1.0 - (x * x / 2.0) * (1.0 -
(x * x / 12.0) * (1.0 -
(x * x / 30.0) *
(1.0 -
x * x / 56.0)));
return result;
}
double sin(double x)
{
return cos(x - M_PI_2);
}
float cosf(float x)
{
if (x < 0.0f)
x = -x;
while (M_PI < x)
x -= M_2_PI;
float result =
1.0f - (x * x / 2.0f) * (1.0f -
(x * x / 12.0f) * (1.0f -
(x * x /
30.0f) *
(1.0f -
x * x /
56.0f)));
return result;
}
float sinf(float x)
{
return cosf(x - M_PI_2);
}
/******************************************************************************/
/* Fonction qui retourne la valeur absolue */
float fabsf(float n)
{
return (*((int *) &n) &= 0x7fffffff);
}
double fabs(double n)
{
return (*(((int *) &n) + 1) &= 0x7fffffff);
}
/******************************************************************************/
/* Fonction qui retourne la racine */
float sqrtf(float n)
{
float x = n;
float y = 1;
double e = 0.000001;
while (x - y > e)
{
x = (x + y) / 2;
y = n / x;
}
return x;
}
double sqrt(double n)
{
double x = n;
double y = 1;
double e = 0.000001;
while (x - y > e)
{
x = (x + y) / 2;
y = n / x;
}
return x;
}
/******************************************************************************/
/* Fonction qui retourne l'inverse de la racine */
float rsqrtf(float n)
{
return 1 / sqrt(n);
}
double rsqrt(double n)
{
return 1 / sqrt(n);
}
/******************************************************************************/
/* Fonction qui retourne la puissance n de a */
u32 pow(u32 a, u8 n)
{
u32 r = 1;
while (n > 0)
{
if (n & 1)
r *= a;
a *= a;
n >>= 1;
}
return r;
}
/******************************************************************************/
/* Fonction qui retourne le logarithme 2 */
u8 log2(u64 n)
{
if (n == 0)
return 0;
int logValue = -1;
while (n)
{
logValue++;
n >>= 1;
}
return logValue + 1;
}
/******************************************************************************/
/* Fonction qui retourne le logarithme 10 */
u8 log10(u64 n)
{
return (n >= 10000000000000000000u) ? 19 : (n >=
100000000000000000u) ?
18 : (n >= 100000000000000000u) ? 17 : (n >=
10000000000000000u)
? 16 : (n >= 1000000000000000u) ? 15 : (n >=
100000000000000u) ?
14 : (n >= 10000000000000u) ? 13 : (n >=
1000000000000u) ? 12
: (n >= 100000000000u) ? 11 : (n >=
10000000000u) ? 10 : (n >=
1000000000u)
? 9 : (n >= 100000000u) ? 8 : (n >= 10000000u) ? 7 : (n >=
1000000u)
? 6 : (n >= 100000u) ? 5 : (n >= 10000u) ? 4 : (n >=
1000u) ? 3
: (n >= 100u) ? 2 : (n >= 10u) ? 1u : 0u;
}
/******************************************************************************/
/* Fonction qui retourne la valeur absolue */
u32 abs(int x)
{
if (x < 0)
x = -x;
return (u32) x;
}
/******************************************************************************/
/* Fonction qui initialise le générateur de nombre aléatoire */
static u32 seed = 0x12341234;
void randomize(void)
{
seed = gettimer();
}
/******************************************************************************/
/* Fonction qui renvoie un nombre aléatoire */
u32 rand(void)
{
u32 next = seed;
int result;
next *= 1103515245;
next += 12345;
result = (unsigned int) (next / 65536) % 2048;
next *= 1103515245;
next += 12345;
result <<= 10;
result ^= (unsigned int) (next / 65536) % 1024;
next *= 1103515245;
next += 12345;
result <<= 10;
result ^= (unsigned int) (next / 65536) % 1024;
seed = next;
return result;
}
/******************************************************************************/
/* Fonction qui renvoie un nombre aléatoire borné */
u32 random(u32 lower, u32 upper)
{
return (rand() % (upper - lower + 1)) + lower;
}
/*******************************************************************************/