First steps with the FINAL CUT widget toolkit ============================================= Table of Contents ----------------- - [Basic functions](#basic-functions) - [Widgets](#widgets) - [Widget tree](#widget-tree) - [How to use the library](#how-to-use-the-library) - [Memory Management](#memory-management) - [Event Processing](#event-processing) - [Event handler reimplementation](#event-handler-reimplementation) - [Event types](#available-event-types) - [Timer event](#using-a-timer-event) - [User event](#using-a-user-event) - [Signals and Callbacks](#signals-and-callbacks) - [Default signals](#the-final-cut-widgets-emit-the-following-default-signals) - [Callback function](#example-of-a-callback-function) - [Callback lambda expression](#example-of-an-lambda-expression-callback) - [Callback method](#example-of-a-callback-function) - [Custom signals](#send-custom-signals) - [Widget layout](#widget-layout) - [Coordinates](#coordinates) - [Lengths](#lengths) - [Areas](#areas) - [Dynamic layout](#dynamic-layout) - [Scroll view](#scroll-view) Basic functions --------------- FINAL CUT is a library for creating text-based terminal applications. It runs on several Unix-like platforms. The release of FINAL CUT is licensed under the terms of the GNU Lesser General Public License v3.0 ([GNU LGPL v3](https://www.gnu.org/licenses/lgpl-3.0-standalone.html)), which allows flexible licensing of applications. FINAL CUT was written in the programming language [C++](https://en.wikipedia.org/wiki/C%2B%2B). The object-oriented design allows the creation of fast and lean programs. FINAL CUT is a [widget toolkit](http://en.wikipedia.org/wiki/Widget_toolkit). A user interface usually consists of several [widgets](https://en.wikipedia.org/wiki/Software_widget). FINAL CUT draws widgets on virtual windows and then mapped them on a virtual terminal. It uses the terminal capabilities from the [Termcap library](https://en.wikipedia.org/wiki/Termcap) to display the character matrix of the virtual terminal on the screen or a terminal emulator. It uses various optimization methods to improve the drawing speed.
application structure
Figure 1. Structure of a FINAL CUT application
Widgets ------- FINAL CUT has many widgets. It offers buttons, input fields, menus, and dialog boxes that cover the most common use cases. Widgets are visual elements that are combined to create user interfaces. Own widgets can be easily created by creating a derived class of `FWidget` or other existing widgets. All widgets are instances of [FWidget](https://codedocs.xyz/gansm/finalcut/classfinalcut_1_1FWidget.html) or its subclasses. A widget can contain any number of child widgets. Child widgets are displayed in the display area of the parent widget. Window widgets based on `FWindow` have their own virtual display area and are independent of the parent widget. When a parent widget is disabled, hidden, or deleted, the same operation is used recursively to all its child widgets. The base class `FObject` implements the self-organized object tree behavior. For example, `addChild()` removes the child ownership from an existing parent object before assigning it to the new target. When a child becomes deleted, the parent-child relationship causes its reference in the parent object to be removed. An explicit `delChild()` is no longer required here. Widget tree ----------- An `FApplication` widget is the top-level widget of an application. It is unique and can not have a parent widget. The class `FApplication` manages all settings and assigns keyboard and mouse input to the different widgets.
widget tree
Figure 2. Widget tree of a FINAL CUT application


The main widget of a FINAL CUT application is the only object that `FApplication` can have as a child. This main widget is usually a window object that contains all sub-widgets of the application. A sub-widget can also be another window. How to use the library ---------------------- At the beginning of this introduction to the FINAL CUT we will start with a small example. The following example creates an empty 30×10 character dialog. **File:** *dialog.cpp* ```cpp #include int main (int argc, char* argv[]) { finalcut::FApplication app(argc, argv); finalcut::FDialog dialog(&app); dialog.setText ("A dialog"); const finalcut::FPoint position{25, 5}; const finalcut::FSize size{30, 10}; dialog.setGeometry (position, size); finalcut::FWidget::setMainWidget(&dialog); dialog.show(); return app.exec(); } ```
dialog.cpp
Figure 3. A blank dialog


*(Note: You can close the dialog with the mouse, Shift+F10 or Ctrl+^)* After entering the source code in *dialog.cpp* you can compile the above program with gcc: ```bash g++ dialog.cpp -o dialog -O2 -lfinal ``` How it works ------------ ```cpp #include ``` All final cut programs must include the *final.h* header. ```cpp finalcut::FApplication app(argc, argv); ``` This line creates the `finalcut::FApplication` object `app` with the command line arguments `argc` and `argv`. This object manages the application main event loop. It receives keyboard and mouse events and sends them to the target widgets. You must create an application object before you can create a widgets object. The next line ```cpp finalcut::FDialog dialog(&app); ``` creates the `finalcut::FDialog` object `dialog` with the object `app` as parent object. The `finalcut::FDialog` class is the base class for creating dialog windows. ```cpp dialog.setText ("A dialog"); ``` The title bar of the dialog box gets the text "A dialog". ```cpp finalcut::FPoint position{25, 5}; finalcut::FSize size{30, 10}; dialog.setGeometry (position, size); ``` The dialog window gets a width of 30 and a height of 10 characters. The position of the window in the terminal is at x=25 and y=5 (note: x=1 and y=1 represents the upper left corner). ```cpp finalcut::FWidget::setMainWidget(&dialog); ``` The `dialog` object was now selected as the main widget for the application. When you close the main widget, the entire application quits. ```cpp dialog.show(); ``` A window or widget is not visible directly after its creation. Only the call of `show()` makes it (and its child objects, if available) visible. ```cpp return app.exec(); ``` The last line calls `exec()` to start the application and return the result to the operating system. The started application enters the main event loop. This loop does not end until the window is not closed. Memory Management ----------------- To create a hierarchy of FObjects (or derived classes/widgets), a new FObject must initialize with its parent object. ```cpp FObject* parent = new FObject(); FObject* child = new FObject(parent); ``` To deallocate the used memory of a parent FObject, the allocated memory of its child objects will also automatically deallocate. An object can also be assigned to another object later via `addChild()`. ```cpp FObject* parent = new FObject(); FObject* child = new FObject(); parent->addChild(child); ``` The child object assignment can also remove at any time with `delChild()`. ```cpp FObject* parent = new FObject(); FObject* child = new FObject(parent); parent->delChild(child); ``` If an FObject with a parent will remove from the hierarchy, the destructor automatically deletes the object assignment from its parent object. If a class object doesn't derive from FObject, you must implement storage deallocation yourself. **File:** *memory.cpp* ```cpp #include using namespace finalcut; int main (int argc, char* argv[]) { FApplication app(argc, argv); // The object dialog is managed by app FDialog* dialog = new FDialog(&app); dialog->setText ("Window Title"); dialog->setGeometry (FPoint{25, 5}, FSize{40, 8}); // The object input is managed by dialog FLineEdit* input = new FLineEdit("predefined text", dialog); input->setGeometry(FPoint{8, 2}, FSize{29, 1}); input->setLabelText (L"&Input"); // The object label is managed by dialog FLabel* label = new FLabel ( "Lorem ipsum dolor sit amet, consectetur " "adipiscing elit, sed do eiusmod tempor " "incididunt ut labore et dolore magna aliqua." , dialog ); label->setGeometry (FPoint{2, 4}, FSize{36, 1}); FWidget::setMainWidget(dialog); dialog->show(); return app.exec(); } ```
memory.cpp
Figure 4. FObject manages its child objects


*(Note: You can close the window with the mouse, Shift+F10 or Ctrl+^)* After entering the source code in *memory.cpp* you can compile the above program with gcc: ```bash g++ memory.cpp -o memory -O2 -lfinal ``` Event Processing ---------------- Calling `FApplication::exec()` starts the FINAL CUT main event loop. While the event loop is running, the system checks all the time whether an event has occurred and sends it to the application's currently focused object. The events of the terminal, such as keystrokes, mouse actions, or terminal size changing, are translated into `FEvent` objects, and sent them to the active `FObject`. It is also possible to use `FApplication::sendEvent()` or `FApplication::queueEvent()` to send a specific event to an object. `FObject`-derived objects process incoming events by reimplementing the virtual method `event()`. The `FObject` itself can only call its own events `onTimer()` and `onUserEvent()` and ignores all other events. The `FObject`-derived class `FWidget` also reimplements the `event()` method to handle further events. `FWidget` calls the `FWidget::onKeyPress` method when you press a key, or the `FWidget::onMouseDown` method when you click a mouse button. ### Event handler reimplementation ### An event in FINAL CUT is an object that inherits from the base class `FEvent`. There are several event types, represented by an enum value. For example, the method `FEvent::type()` returns the type `fc::MouseDown_Event` when you press down a mouse button. Some event types have data that cannot store in an `FEvent` object. For example, a click event of the mouse must store which button is triggered and where the mouse pointer was at that time. In classes derived from `FEvent`, such as `FMouseEvent()`, we store this data. Widgets get their events from the `event()` method inherited from FObject. The implementation of `event()` in `FWidget` forwards the most common event types to specific event handlers such as `FMouseEvent()`, `FKeyEvent()` or `FResizeEvent()`. There are many other event types. You can create own event types and send them to other objects and widgets. ### Available event types ### ```cpp enum events { None_Event, // invalid event KeyPress_Event, // key pressed KeyUp_Event, // key released KeyDown_Event, // key pressed MouseDown_Event, // mouse button pressed MouseUp_Event, // mouse button released MouseDoubleClick_Event, // mouse button double click MouseWheel_Event, // mouse wheel rolled MouseMove_Event, // mouse move FocusIn_Event, // focus in FocusOut_Event, // focus out ChildFocusIn_Event, // child focus in ChildFocusOut_Event, // child focus out WindowActive_Event, // activate window WindowInactive_Event, // deactivate window WindowRaised_Event, // raise window WindowLowered_Event, // lower window Accelerator_Event, // keyboard accelerator Resize_Event, // terminal resize Show_Event, // widget is shown Hide_Event, // widget is hidden Close_Event, // widget close Timer_Event, // timer event occur User_Event // user defined event }; ``` ### Using a timer event ### The following example starts a periodic timer that triggers an `FTimerEvent()` every 100 ms. The virtual method `onTimer()` is then called each time in the same dialog object. **File:** *timer.cpp* ```cpp #include using namespace finalcut; class dialogWidget : public FDialog { public: explicit dialogWidget (FWidget* parent = nullptr) : FDialog{parent} { setText ("Dialog"); setGeometry (FPoint{25, 5}, FSize{23, 4}); label.setGeometry (FPoint{1, 1}, FSize{10, 1}); label.setAlignment (Align::Right); value.setGeometry (FPoint{11, 1}, FSize{10, 1}); id = addTimer(100); } private: void onTimer (FTimerEvent* ev) override { if ( id == ev->getTimerId() && n < 9999999999 ) { value.setNumber(n); value.redraw(); n++; } } FLabel label{"Counter: ", this}; FLabel value{"0", this}; long n{0}; int id{0}; }; int main (int argc, char* argv[]) { FApplication app(argc, argv); dialogWidget dialog(&app); FWidget::setMainWidget(&dialog); dialog.show(); return app.exec(); } ```
timer.cpp
Figure 5. FObject::onTimer event handler


*(Note: You can close the window with the mouse, Shift+F10 or Ctrl+^)* After entering the source code in *timer.cpp* you can compile the above program with gcc: ```bash g++ timer.cpp -o timer -O2 -lfinal -std=c++11 ``` ### Using a user event ### You can use the `FUserEvent()` to create a individual event and send it to a specific object. If you want to create more than one user event, you can specify an identification number (0 in the example below) to identify the different events. This number can get later with `getUserId()`. User events should be generated in the main event loop. For this purpose, the class `FApplication` provides the virtual method `processExternalUserEvent()`. This method can be overwritten in a derived class and filled with user code. The following example reads the average system load and creates a user event when a value changes. This event sends the current values to an `FLabel` widget and displays them in the terminal. **File:** *user-event.cpp* ```cpp #include #include #define _BSD_SOURCE 1 #define _DEFAULT_SOURCE 1 using LoadAvg = double[3]; using namespace finalcut; class extendedApplication : public FApplication { public: extendedApplication (const int& argc, char* argv[]) : FApplication(argc, argv) { } private: void processExternalUserEvent() override { if ( getMainWidget() ) { if ( getloadavg(load_avg, 3) < 0 ) FApplication::getLog()->error("Can't get load average values"); if ( last_avg[0] != load_avg[0] || last_avg[1] != load_avg[1] || last_avg[2] != load_avg[2] ) { FUserEvent user_event(Event::User, 0); user_event.setData (load_avg); FApplication::sendEvent (getMainWidget(), &user_event); } for (std::size_t i = 0; i < 3; i++) last_avg[i] = load_avg[i]; } } // Data member LoadAvg load_avg{}, last_avg{}; }; class dialogWidget final : public FDialog { public: explicit dialogWidget (FWidget* parent = nullptr) : FDialog{"User event", parent} { FDialog::setGeometry (FPoint{25, 5}, FSize{40, 6}); loadavg_label.setGeometry (FPoint{2, 2}, FSize{36, 1}); } private: void onUserEvent (FUserEvent* ev) override { const auto& lavg = ev->getData(); std::setlocale(LC_NUMERIC, "C"); loadavg_label.clear(); loadavg_label << "Load average: " << lavg[0] << ", " << lavg[1] << ", " << lavg[2] << " "; loadavg_label.redraw(); } FLabel loadavg_label{this}; }; int main (int argc, char* argv[]) { extendedApplication app(argc, argv); dialogWidget dialog(&app); FWidget::setMainWidget(&dialog); dialog.show(); return app.exec(); } ```
user-event.cpp
Figure 6. User event generation


*(Note: You can close the window with the mouse, Shift+F10 or Ctrl+^)* After entering the source code in *user-event.cpp* you can compile the above program with gcc: ```bash g++ user-event.cpp -o user-event -O2 -lfinal -std=c++11 ``` Signals and Callbacks --------------------- The callback mechanism is essential for developing applications with FINAL CUT. Callback routines allow the programmer to connect different objects (which do not need to know each other). Connected objects notify each other when an action occurs in a widget. To uniquely identify a widget action, it uses signal strings. For example, if an `FButton` object gets clicked by a keyboard or mouse, it sends the string "clicked". A signal handler explicitly provided by Widget, in the form of a callback function or a callback method, can react to such a signal. A callback function has no return value and can have various arguments: ```cpp void cb_function (FWidget* w, int* i, double* d, ...) {...} ``` The structure of a callback method is the same: ```cpp void classname::cb_methode (FWidget* w, int* i, double* d, ...) {...} ``` We use the `addCallback()` method of the `FWidget` class to connect to other widget objects. 1. For calling functions or static methods via a pointer: ```cpp template< typename Function , typename FunctionPointer::type = nullptr , typename... Args > void FWidget::addCallback ( const FString& cb_signal , Function&& cb_function , Args&&... args) {...} ``` 2. For calling functions or static methods via a reference: ```cpp template< typename Function , typename FunctionReference::type = nullptr , typename... Args > void FWidget::addCallback ( const FString& cb_signal , Function& cb_function , Args&&... args) {...} ``` 3. For calling a member method of a specific instance: ```cpp template< typename Object , typename Function , typename ObjectPointer::type = nullptr , typename MemberFunctionPointer::type = nullptr , typename... Args > void FWidget::addCallback ( const FString& cb_signal , Object&& cb_instance , Function&& cb_member , Args&&... args) {...} ``` 4. For calling a std::bind call wrapper or a lambda expression: ```cpp template< typename Function , typename ClassObject::type = nullptr , typename... Args > void FWidget::addCallback ( const FString& cb_signal , Function&& cb_function , Args&&... args) {...} ``` 5. For calling a std::bind call wrapper to a specific instance: ```cpp template< typename Object , typename Function , typename ObjectPointer::type = nullptr , typename ClassObject::type = nullptr , typename... Args > void FWidget::addCallback ( const FString& cb_signal , Object&& cb_instance , Function&& cb_function , Args&&... args) {...} ``` 6. For calling a lambda function that has been stored in a variable with the keyword auto: ```cpp template< typename Function , typename ClassObject::type = nullptr , typename... Args > void FWidget::addCallback ( const FString& cb_signal , Function& cb_function , Args&&... args) {...} ``` With `delCallback(...)` you can remove a connection to a signal handler or a widget instance. Alternatively, you can use `delCallbacks()` to remove all existing callbacks from an object. 1. To delete functions or static methods callbacks via a pointer: ```cpp template< typename FunctionPtr , typename FunctionPointer::type = nullptr > void FWidget::delCallback (FunctionPtr&& cb_func_ptr) {...} ``` 2. To delete functions or static methods callbacks via a reference: ```cpp template< typename Function , typename FunctionReference::type = nullptr > void FWidget::delCallback (Function& cb_function) {...} ``` 3. To delete all callbacks from a specific instance: ```cpp template< typename Object , typename ObjectPointer::type = nullptr > void FWidget::delCallback (Object&& cb_instance) {...} ``` 4. To delete all callbacks of a signal: ```cpp void delCallback (const FString& cb_signal) {...} ``` 5. To delete all callbacks of a signal and specific instance: ```cpp template< typename Object , typename ObjectPointer::type = nullptr > void delCallback (const FString& cb_signal, Object&& cb_instance) {...} ``` 6. To delete all callbacks from a widget: ```cpp void delCallback() {...} ``` ### The FINAL CUT widgets emit the following default signals ###
FButton
"clicked"
FCheckMenuItem
"clicked"
"toggled"
FLineEdit
"activate"
"changed"
FListBox
"clicked"
"row-changed"
"row-selected"
FListView
"clicked"
"row-changed"
FMenu
"activate"
FMenuItem
"activate"
"clicked"
"deactivate"
FRadioMenuItem
"clicked"
"toggled"
FScrollbar
"change-value"
FSpinBox
"changed"
FStatusBar
"activate"
FTextView
"changed"
FToggleButton
"clicked"
"toggled"
FWidget
"destroy"
"enable"
"disable"
"focus-in"
"focus-out"
"mouse-press"
"mouse-release"
"mouse-move"
"mouse-wheel-down"
"mouse-wheel-up"
  ### Example of a callback function: ### **File:** *callback-function.cpp* ```cpp #include using namespace finalcut; void cb_changeText (const FButton& button, FLabel& label) { label.clear(); label << "The " << button.getClassName() << " was pressed"; label.redraw(); } int main (int argc, char* argv[]) { FApplication app(argc, argv); FDialog dialog(&app); dialog.setText ("A dialog with callback function"); dialog.setGeometry (FRect{25, 5, 45, 9}); FLabel label (&dialog); label = "The button has never been pressed before"; label.setGeometry (FPoint{2, 2}, FSize{41, 1}); FButton button (&dialog); // Character follows '&' will be used as the accelerator key button = "&Click me"; button.setGeometry (FPoint{15, 5}, FSize{14, 1}); // Connect the button signal "clicked" with the callback function button.addCallback ( "clicked", // Callback signal &cb_changeText, // Function pointer std::cref(button), // First function argument std::ref(label) // Second function argument ); FWidget::setMainWidget(&dialog); dialog.show(); return app.exec(); } ```
callback-function.cpp
Figure 7. Button with a callback function


*(Note: You can close the dialog with the mouse, Shift+F10 or Ctrl+^)* After entering the source code in *callback-function.cpp* you can compile the above program with gcc: ```bash g++ callback-function.cpp -o callback-function -O2 -lfinal ```   ### Example of an lambda expression callback: ### **File:** *callback-lambda.cpp* ```cpp #include using namespace finalcut; int main (int argc, char* argv[]) { FApplication app(argc, argv); FDialog dialog(&app); dialog.setText ("Lambda expression as callback"); dialog.setGeometry (FRect{25, 5, 45, 9}); FButton button ("&bottom", &dialog); button.setGeometry (FPoint{15, 5}, FSize{14, 1}); // Connect the button signal "clicked" with the lambda expression button.addCallback ( "clicked", // Callback signal [] (FButton& button, FDialog& dgl) // Lambda function { if ( button.getY() != 2 ) { button.setPos (FPoint{15, 2}); button.setText("&top"); } else { button.setPos (FPoint{15, 5}); button.setText("&bottom"); } dgl.redraw(); }, std::ref(button), // First function argument std::ref(dialog) // Second function argument ); FWidget::setMainWidget(&dialog); dialog.show(); return app.exec(); } ```
callback-lambda.cpp
Figure 8. Button with lambda expression callback.


*(Note: You can close the dialog with the mouse, Shift+F10 or Ctrl+^)* After entering the source code in *callback-lambda.cpp* you can compile the above program with gcc: ```bash g++ callback-lambda.cpp -o callback-lambda -O2 -lfinal -std=c++11 ```   ### Example of a callback method: ### **File:** *callback-method.cpp* ```cpp #include using namespace finalcut; class dialogWidget : public FDialog { public: explicit dialogWidget (FWidget* parent = nullptr) : FDialog{parent} { setText ("Callback method"); setGeometry (FPoint{25, 5}, FSize{25, 7}); button.setGeometry (FPoint{7, 3}, FSize{10, 1}); // Connect the button signal "clicked" with the callback method button.addCallback ( "clicked", // Callback signal finalcut::getFApplication(), // Class instance &finalcut::FApplication::cb_exitApp, // Method pointer this // Function argument ); } private: FButton button{"&Quit", this}; }; int main (int argc, char* argv[]) { FApplication app(argc, argv); dialogWidget dialog(&app); FWidget::setMainWidget(&dialog); dialog.show(); return app.exec(); } ```
callback-method.cpp
Figure 9. Button with a callback method


*(Note: You can close the window with the mouse, Shift+F10 or Ctrl+^)* After entering the source code in *callback-method.cpp* you can compile the above program with gcc: ```bash g++ callback-method.cpp -o callback-method -O2 -lfinal -std=c++11 ```   ### Send custom signals ### You can use the `emitCallback()` method to generate a user-defined signal. You can connect this signal later with the method `addCallback()` to a self-defined routine. **File:** *emit-signal.cpp* ```cpp #include using namespace finalcut; class dialogWidget : public FDialog { public: explicit dialogWidget (FWidget* parent = nullptr) : FDialog{parent} { setGeometry (FPoint{25, 5}, FSize{22, 7}); setText ("Emit signal"); const FSize size{5, 1}; label.setGeometry (FPoint{8, 1}, size); label.setAlignment (Align::Right); label.setForegroundColor (FColor::Black); plus.setGeometry (FPoint{3, 3}, size); minus.setGeometry (FPoint{3, 3} + FPoint{10, 0}, size); plus.setNoUnderline(); minus.setNoUnderline(); // Connect the button signal "clicked" with the callback method plus.addCallback ("clicked", this, &dialogWidget::cb_plus); minus.addCallback ("clicked", this, &dialogWidget::cb_minus); // Connect own signals addCallback ("hot", this, &dialogWidget::cb_set_red); addCallback ("regular", this, &dialogWidget::cb_set_black); addCallback ("cold", this, &dialogWidget::cb_set_blue); } private: void cb_plus() { if ( t < 100 ) t++; if ( t == 30 ) emitCallback("hot"); else if ( t == 1 ) emitCallback("regular"); setTemperature(); } void cb_minus() { if ( t > -99 ) t--; if ( t == 0 ) emitCallback("cold"); else if ( t == 29 ) emitCallback("regular"); setTemperature(); } void cb_set_blue() { label.setForegroundColor (FColor::Blue); } void cb_set_black() { label.setForegroundColor (FColor::Black); } void cb_set_red() { label.setForegroundColor (FColor::Red); } void setTemperature() { label.clear(); label << t << "°C"; label.redraw(); } int t = 20; FLabel label{FString() << t << "°C", this}; FButton plus {"&+", this}; FButton minus {"&-", this}; }; int main (int argc, char* argv[]) { FApplication app(argc, argv); dialogWidget dialog(&app); FWidget::setMainWidget(&dialog); dialog.show(); return app.exec(); } ```
emit-signal.cpp
Figure 10. Callbacks with custom signals


*(Note: You can close the window with the mouse, Shift+F10 or Ctrl+^)* After entering the source code in *emit-signal.cpp* you can compile the above program with gcc: ```bash g++ emit-signal.cpp -o emit-signal -O2 -lfinal -std=c++11 ``` Widget layout ------------- ### Coordinates ### The positioning of a widget in the terminal works via a coordinate system. It consists of _x_ characters in the horizontal and _y_ characters in the vertical. The upper left corner has the coordinates (1, 1). With the commands `getDesktopWidth()` and `getDesktopHeight()`, the width and height of the terminal get retrieved. These two values result in the position of the lower right terminal corner. The position of a widget is retrievable with `getX()`, `getY()`, and `getPos()` or is definable with `setX()`, `setY()`, and `setPos()`. The data type for each coordinate is an `int`. All positions represent an `FPoint` object. The positioning of the widget is always relative to its parent widget. The top parent widget in a chain of children contains the terminal desktop. There the absolute terminal positions are still identical to the relative positions (`getPos()` = `getTermPos()`). In the case of a child widget, the positioning is corresponding to the upper left corner of the parent widget plus a possible padding space (can be determined with `getLeftPadding()` and `getTopPadding()`). If you want to ignore padding spaces, you must force this with the `ignorePadding()` method.
widget coordinates
Figure 11. Widget coordinates


```cpp int getX() const; int getY() const; const FPoint getPos() const; int getTermX() const; int getTermY() const; const FPoint getTermPos() const; virtual void setX (int x, bool adjust = true); virtual void setY (int y, bool adjust = true); virtual void setPos (const FPoint& p, bool adjust = true); ``` If you set the value of `adjust` to `false` when calling `setX()`, `setY()`, or `setPos()`, this will prevent the explicit call of `adjustSize()` afterward. This is important to avoid `adjustSize()` loops or to block the `adjustSize()` call from being repeated unnecessarily often. ### Lengths ### The dimensions of a widget can be retrieved and defined separately in width and height. The methods `getWidth()` and `getHeight()` respectively `setWidth()` and `setHeight()` are used for this. Because a length cannot be negative, all lengths are of type `std::size_t`. The maximum size of a child widget automatically results from the size of the parent widget, which is retrievable with `getClientWidth()` and `getClientHeight()`. Some widgets have a border, a title bar, or both, which can reduce the maximum size of the child widget.         widget width ≥ client widget width
        widget height ≥ client widget height Corresponding padding space ensures the correct distance here. The padding space can be retrieved separately for all four sides with the widget methods `getTopPadding()`, `getLeftPadding()`, `getBottomPadding()`, and `getRightPadding()`. You can set the required padding space for the widget using the `setTopPadding()`, `setLeftPadding()`, `setBottomPadding()` and `setRightPadding()` methods.         widget width = left padding + client width + right padding
        widget height = top padding + client height + bottom padding
widget lengths
Figure 12. Width and height of a widget


```cpp std::size_t getWidth() const; std::size_t getHeight() const; std::size_t getClientWidth() const; std::size_t getClientHeight() const; int getTopPadding() const; int getLeftPadding() const; int getBottomPadding() const; int getRightPadding() const; virtual void setWidth (std::size_t width, bool adjust = true); virtual void setHeight (std::size_t height, bool adjust = true); void setTopPadding (int top, bool adjust = true); void setLeftPadding (int left, bool adjust = true); void setBottomPadding (int bottom, bool adjust = true); void setRightPadding (int right, bool adjust = true); ``` If the value of `adjust` is set to `false` for `setWidth()`, `setHeight()`, `setTopPadding()`, `setLeftPadding()`, `setBottomPadding()` or `setRightPadding()`, then `adjustSize()` is not explicitly called afterward. This is important to prevent `adjustSize()` loops or to avoid that `adjustSize()` is called unnecessarily often. ### Areas ### The terminal area in which a widget appears determines its geometry. The geometry of a widget is composed of its position and its size. A widget position is always of object type `FPoint` and a widget size of type `FSize`. The widget geometry can get as `FRect` object via the widget method `getGeometry()` and set with the method `setGeometry()`. The `getTermGeometry()` method gets the total values of the terminal geometry. If you are only interested in the size of a widget, you can also use the method `getSize()`. To set the widget size, you can use the method `setSize()`. The position of a shadow is outside the widget. The shadow size itself as `FSize` object is retrievable via the `getShadow()` method. You can set the widget shadow size with the `setShadowSize()` method. If you want to get the geometry values of a widget, including its shadow, you can use the method `getGeometryWithShadow()` from the FWidget class. If you want to have the entire geometry with shadow for the absolute geometry values as a `FRect` object, you can call the method `getTermGeometryWithShadow()`.
widget geometry
Figure 13. Geometry of widgets


```cpp const FSize getSize() const; const FSize getClientSize() const; const FRect& getGeometry() const; const FRect& getTermGeometry(); const FSize& getShadow() const; const FRect& getGeometryWithShadow(); const FRect& getTermGeometryWithShadow(); virtual void setSize (const FSize& size, bool adjust = true); virtual void setGeometry (const FRect& box, bool adjust = true); virtual void setGeometry (const FPoint& p, const FSize& s, bool adjust = true); virtual void setShadowSize (const FSize& size); ``` If you explicitly set the value of `adjust` to `false` when using the `setSize()`, `setGeometry()` or `setShadowSize()` mutators, the `adjustSize()` method is no longer called automatically. This can be used to prevent recursive `adjustSize()` calls or to avoid unnecessary `adjustSize()` calls. ### Dynamic layout ### A modern terminal emulation like xterm has no fixed resolution. They offer the possibility to change the height and width of the terminal at any time. That triggers a resize-event that calls the `adjustSize()` method. This method allows adapting the widget to a changed terminal size. You can override the `adjustSize()` method to adjust the size and position of the widget. The method `adjustSize()` will also be called indirectly via calling methods `setGeometry()`, `setX()`, `setY()`, `setPos()`, `setWidth()`, `setHeight()`, `setSize()`, `setTopPadding()`, `setLeftPadding()`, `setBottomPadding()`, `setRightPadding()`, or `setDoubleFlatLine()`. Scalable dialogs derived from FDialog can change the dialog size by clicking on the lower right corner of the window. You can intercept a scaling action by overriding the `setSize()` method and adjusting the client widgets. **File:** *size-adjustment.cpp* ```cpp #include using namespace finalcut; class dialogWidget : public FDialog { public: explicit dialogWidget (FWidget* parent = nullptr) : FDialog{parent} { setText ("Dialog"); setResizeable(); button.setGeometry (FPoint{1, 1}, FSize{12, 1}, false); input.setGeometry (FPoint{2, 3}, FSize{12, 1}, false); // Set dialog geometry and calling adjustSize() setGeometry (FPoint{25, 5}, FSize{40, 12}); setMinimumSize (FSize{25, 9}); } private: inline void checkMinValue (int& n) { if ( n < 1 ) // Checks and corrects the minimum value n = 1; } void centerDialog() { auto x = int((getDesktopWidth() - getWidth()) / 2); auto y = int((getDesktopHeight() - getHeight()) / 2); checkMinValue(x); checkMinValue(y); setPos (FPoint{x, y}, false); } void adjustWidgets() { const auto bx = int(getWidth() - button.getWidth() - 3); const auto by = int(getHeight() - 4); button.setPos (FPoint{bx, by}, false); input.setWidth (getWidth() - 4); const auto ly = int(getHeight() / 2) - 1; input.setY (ly, false); } void adjustSize() override { // Calling super class method adjustSize() FDialog::adjustSize(); // Centers the dialog in the terminal centerDialog(); // Adjust widgets before drawing adjustWidgets(); } void draw() override { // Calling super class method draw() FDialog::draw(); print() << FPoint{3, 3} << FColorPair{FColor::Black, FColor::White} << "Text on " << FColorPair{FColor::Blue, FColor::Yellow} << "top"; } FLineEdit input{"Middle", this}; FButton button{"&Bottom", this}; }; int main (int argc, char* argv[]) { FApplication app(argc, argv); dialogWidget dialog(&app); FWidget::setMainWidget(&dialog); dialog.show(); return app.exec(); } ```
size-adjustment.cpp
Figure 14. Dynamic layout


*(Note: You can close the window with the mouse, Shift+F10 or Ctrl+^)* After entering the source code in *size-adjustment.cpp* you can compile the above program with gcc: ```bash g++ size-adjustment.cpp -o size-adjustment -O2 -lfinal -std=c++11 ``` Scroll view ----------- The scroll view of the `FScrollView` class allows users to view content that is larger than the visible area. The `FScrollView` widget displays the horizontal and vertical scroll bar by default, only if the content size requires it. You can controll this behavior by the two methods `setHorizontalScrollBarMode()` and `setVerticalScrollBarMode()`. ```cpp setHorizontalScrollBarMode (fc::scrollBarMode); setVerticalScrollBarMode (fc::scrollBarMode); ``` You pass the scroll bar visibility mode as a value of the enum type `fc::scrollBarMode`. ```cpp enum scrollBarMode { Auto = 0, // Shows a scroll bar when area is larger than viewport Hidden = 1, // Never shows a scroll bar Scroll = 2 // Always shows a scroll bar }; ``` You can add widgets to an `FScrollView` object as child objects and place them (with a widget positioning method) on the scrollable area. If a client widget gets the focus, it automatically scrolls the viewport to the focused widget. You can use the methods `scrollTo()`, `scrollToX()`, `scrollToY()` and `scrollBy()` to set the scroll position of the viewport directly. The `FButtonGroup` widget uses `FScrollView` to display more buttons in the frame than the height allows. **File:** *scrollview.cpp* ```cpp #include #include using namespace finalcut; class dialogWidget : public FDialog { public: explicit dialogWidget (FWidget* parent = nullptr) : FDialog{parent} { setText ("Dialog"); setGeometry (FPoint{28, 2}, FSize{24, 21}); scrollview.setGeometry(FPoint{1, 1}, FSize{22, 11}); scrollview.setScrollSize(FSize{60, 27}); // Attention: getColorTheme() requires an initialized terminal const auto& wc = getColorTheme(); setColor (wc->label_inactive_fg, wc->dialog_bg); scrollview.clearArea(); FColorPair red (FColor::LightRed, wc->dialog_bg); FColorPair black (FColor::Black, wc->dialog_bg); FColorPair cyan (FColor::Cyan, wc->dialog_bg); static std::vector d { {"NW", FPoint{3, 13}, FPoint{1, 1}, black}, {"N", FPoint{10, 13}, FPoint{21, 1}, red}, {"NE", FPoint{17, 13}, FPoint{41, 1}, black}, {"W", FPoint{3, 15}, FPoint{1, 10}, black}, {"*", FPoint{10, 15}, FPoint{21, 10}, black}, {"E", FPoint{17, 15}, FPoint{41, 10}, black}, {"SW", FPoint{3, 17}, FPoint{1, 19}, black}, {"S", FPoint{10, 17}, FPoint{21, 19}, cyan}, {"SE", FPoint{17, 17}, FPoint{41, 19}, black} }; for (auto&& b : d) { scrollview.print() << std::get<2>(b) + FPoint{10, 5} << std::get<3>(b) << std::get<0>(b); auto edit = new FLineEdit("direction " + std::get<0>(b), &scrollview); edit->setGeometry(std::get<2>(b) + FPoint{1, 1}, FSize{17, 1}); auto btn = new FButton(std::get<0>(b), this); btn->setGeometry(std::get<1>(b), FSize{4, 1}); btn->unsetShadow(); btn->addCallback ( "clicked", this, &dialogWidget::cb_button, std::get<2>(b) ); }; } private: typedef std::tuple direction; void cb_button (const FPoint& p) { scrollview.scrollTo(p); } FScrollView scrollview{this}; }; int main (int argc, char* argv[]) { FApplication app(argc, argv); app.initTerminal(); // Terminal initialization dialogWidget dialog(&app); FWidget::setMainWidget(&dialog); dialog.show(); return app.exec(); } ```
scrollview.cpp
Figure 15. Dialog with a scrolling viewport


*(Note: You can close the window with the mouse, Shift+F10 or Ctrl+^)* After entering the source code in *scrollview.cpp* you can compile the above program with gcc: ```bash g++ scrollview.cpp -o scrollview -O2 -lfinal -std=c++11 ```