#include #include "matrix.h" #include "stdio.h" mat4_t mat4_identity(void) { // | 1 0 0 0 | // | 0 1 0 0 | // | 0 0 1 0 | // | 0 0 0 1 | mat4_t eye = { // eye for identity .m = { // can skip the .m = part - it's just for clarity {1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1} } }; return eye; } vec4_t mat4_mul_vec4(mat4_t m, vec4_t v){ // Example of this multiplication (values can be all different): // | sx 0 0 0 | | x | | x'| // | 0 sy 0 0 | X | y | = | y'| // | 0 0 sz 0 | | z | | z'| // | 0 0 0 1 | | 1 | | 1 | vec4_t result; result.x = m.m[0][0] * v.x + m.m[0][1] * v.y + m.m[0][2] * v.z + m.m[0][3] * v.w; result.y = m.m[1][0] * v.x + m.m[1][1] * v.y + m.m[1][2] * v.z + m.m[1][3] * v.w; result.z = m.m[2][0] * v.x + m.m[2][1] * v.y + m.m[2][2] * v.z + m.m[2][3] * v.w; result.w = m.m[3][0] * v.x + m.m[3][1] * v.y + m.m[3][2] * v.z + m.m[3][3] * v.w; return result; } mat4_t mat4_mul_mat4(mat4_t a, mat4_t b) { mat4_t m; for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { m.m[i][j] = a.m[i][0] * b.m[0][j] + a.m[i][1] * b.m[1][j] + a.m[i][2] * b.m[2][j] + a.m[i][3] * b.m[3][j]; } } return m; } mat4_t mat4_make_scale(float sx, float sy, float sz){ // | sx 0 0 0 | // | 0 sy 0 0 | // | 0 0 sz 0 | // | 0 0 0 1 | mat4_t m = mat4_identity(); m.m[0][0] = sx; m.m[1][1] = sy; m.m[2][2] = sz; return m; } mat4_t mat4_make_translation(float tx, float ty, float tz){ // | 1 0 0 tx | // | 0 1 0 ty | // | 0 0 1 tz | // | 0 0 0 1 | mat4_t m = mat4_identity(); m.m[0][3] = tx; m.m[1][3] = ty; m.m[2][3] = tz; return m; } mat4_t mat4_make_rotation_x(float angle) { float c = cos(angle); float s = sin(angle); // | 1 0 0 0 | // | 0 c -s 0 | // | 0 s c 0 | // | 0 0 0 1 | mat4_t m = mat4_identity(); m.m[1][1] = c; m.m[1][2] = -s; m.m[2][1] = s; m.m[2][2] = c; return m; } mat4_t mat4_make_rotation_y(float angle) { float c = cos(angle); float s = sin(angle); // | c 0 s 0 | // | 0 1 0 0 | // | -s 0 c 0 | // | 0 0 0 1 | mat4_t m = mat4_identity(); m.m[0][0] = c; m.m[0][2] = s; m.m[2][0] = -s; m.m[2][2] = c; return m; } mat4_t mat4_make_rotation_z(float angle) { float c = cos(angle); float s = sin(angle); // | c -s 0 0 | // | s c 0 0 | // | 0 0 1 0 | // | 0 0 0 1 | mat4_t m = mat4_identity(); m.m[0][0] = c; m.m[0][1] = -s; m.m[1][0] = s; m.m[1][1] = c; return m; } //https://www.youtube.com/watch?v=U0_ONQQ5ZNM - more explanation of this those matrices //https://www.youtube.com/watch?v=vu1VNKHfzqQ here too - start with this one vec4_t mat4_mul_vec4_project(mat4_t mat_proj, vec4_t v) { // multiply the projection matrix by our original vector vec4_t result = mat4_mul_vec4(mat_proj, v); // perform perspective divide with original z-value that is now stored in w if (result.w != 0.0) { result.x /= result.w; result.y /= result.w; result.z /= result.w; } return result; } // translate and scale projected vector to -1 to 1 range mat4_t mat4_make_ortho(float l, float b, float n, float r, float t, float f) { // translate to origin and scale to -1 to 1 range -> width, height, depth should be 2 // Coordinates of center of the provided cube are: float c_x = (l + r) / 2; float c_y = (b + t) / 2; float c_z = (n + f) / 2; // To translate the cube to the origin, we need to subtract the center coordinates from each vertex // | 1 0 0 -c_x | // | 0 1 0 -c_y | // | 0 0 1 -c_z | // | 0 0 0 1 | mat4_t trans = mat4_identity(); trans.m[0][3] = -c_x; trans.m[1][3] = -c_y; trans.m[2][3] = -c_z; // Current width, height, depth of the cube: float width = r - l; float height = t - b; float depth = f - n; // To scale the cube to have width, height, depth of 2 (be from -1 to 1) // we need to multiply each vertex by 2/width, 2/height, 2/depth // | 2/width 0 0 0 | // | 0 2/height 0 0 | // | 0 0 2/depth 0 | // | 0 0 0 1 | mat4_t scale = mat4_identity(); scale.m[0][0] = 2.0 / width; scale.m[1][1] = 2.0 / height; scale.m[2][2] = 2.0 / depth; // Now we need to combine the two matrices into one return mat4_mul_mat4(trans, scale); } mat4_t mat4_make_perspective(float n, float f) { // | n 0 0 0 | // | 0 n 0 0 | // | 0 0 (f+n) (-fn) | // | 0 0 1 0 | mat4_t m = {{{ 0 }}}; m.m[0][0] = n; m.m[1][1] = n; m.m[2][2] = f + n; m.m[2][3] = -f * n; m.m[3][2] = 1.0; return m; } mat4_t mat4_make_projection(float fov, float aspect_ratio, float near, float far) { // Orthographic matrix X Perspective matrix float r = near * tan(fov / 2.0) * aspect_ratio; // aspect_ratio = width / height float t = near * tan(fov / 2.0); float f = far; float l = -r; float b = -t; float n = near; mat4_t t_ortho = mat4_make_ortho(l, b, n, r, t, f); mat4_t t_perspective = mat4_make_perspective(near, far); mat4_t m = mat4_mul_mat4(t_ortho, t_perspective); return m; } mat4_t mat4_make_perspective_old(float fov, float aspect, float znear, float zfar){ // | (w/h)*1/tan(fov/2) 0 0 0 | // | 0 1/tan(fov/2) 0 0 | // | 0 0 zf/(zf-zn) (-zf*zn)/(zf-zn) | // | 0 0 1 0 | mat4_t m = {{{ 0 }}}; m.m[0][0] = aspect * (1 / tan(fov / 2)); m.m[1][1] = 1 / tan(fov / 2); m.m[2][2] = zfar / (zfar - znear); m.m[2][3] = (-zfar * znear) / (zfar - znear); m.m[3][2] = 1.0; return m; } mat4_t mat4_look_at(vec3_t eye, vec3_t target, vec3_t up) { // Compute the forward (z), right (x), and up (y) vectors vec3_t z = vec3_sub(target, eye); vec3_normalize(&z); vec3_t x = vec3_cross(up, z); vec3_normalize(&x); vec3_t y = vec3_cross(z, x); // | x.x x.y x.z -dot(x,eye) | // | y.x y.y y.z -dot(y,eye) | // | z.x z.y z.z -dot(z,eye) | // | 0 0 0 1 | mat4_t view_matrix = {{ { x.x, x.y, x.z, -vec3_dot(x, eye) }, { y.x, y.y, y.z, -vec3_dot(y, eye) }, { z.x, z.y, z.z, -vec3_dot(z, eye) }, { 0, 0, 0, 1 } }}; return view_matrix; }