8.7 KiB
First steps with the Final Cut widget toolkit
How to use the library
At the beginning of this introduction to the Final Cut we will start with a small example.
The following example creates an empty 30×10 character dialog.
File: dialog.cpp
#include <final/final.h>
int main (int argc, char* argv[])
{
finalcut::FApplication app(argc, argv);
finalcut::FDialog dialog(&app);
dialog.setText ("A dialog");
dialog.setGeometry (25, 5, 30, 10);
app.setMainWidget(&dialog);
dialog.show();
return app.exec();
}
(Note: You can close the dialog with the mouse, Shift+F10 or Ctrl+^)
After entering the source code in dialog.cpp you can compile the above program with gcc:
g++ -O2 -lfinal dialog.cpp -o dialog
How it works
#include <final/final.h>
All final cut programs must include the final.h header.
finalcut::FApplication app(argc, argv);
This line creates the finalcut::FApplication
object app
with
the command line arguments argc
and argv
. This object manages
the application main event loop. It receives keyboard and mouse events
and sends them to the target widgets. You must create an application
object before you can create a widgets object.
The next line
finalcut::FDialog dialog(&app);
creates the finalcut::FDialog
object dialog
with the object app
as parent object. The finalcut::FDialog
class is the base class for
creating dialog windows.
dialog.setText ("A dialog");
The title bar of the dialog box gets the text "A dialog".
dialog.setGeometry (25, 5, 30, 10);
The dialog window gets a width of 30 and a height of 10 characters. The position of the window in the terminal is at x=25 and y=5 (note: x=1 and y=1 represents the upper left corner).
app.setMainWidget(&dialog);
The dialog
object was now selected as the main widget for the application.
When you close the main widget, the entire application quits.
dialog.show();
A window or widget is not visible directly after its creation.
Only the call of show()
makes it (and its child objects,
if available) visible.
return app.exec();
The last line calls exec()
to start the application and return
the result to the operating system. The started application enters
the main event loop. This loop does not end until the window is
not closed.
Memory Management
To create a hierarchy of FObjects (or derived classes/widgets), a new FObject must initialize with its parent object.
FObject* parent = new FObject();
FObject* child = new FObject(parent);
To deallocate the used memory of a parent FObject, the allocated memory of its child objects will also automatically deallocate.
An object can also be assigned to another object later via addChild()
.
FObject* parent = new FObject();
FObject* child = new FObject();
parent->addChild(child);
The child object assignment can also remove at any time with
delChild()
.
FObject* parent = new FObject();
FObject* child = new FObject(parent);
parent->delChild(child);
If an FObject with a parent will remove from the hierarchy, the destructor automatically deletes the object assignment from its parent object. If a class object doesn't derive from FObject, you must implement storage deallocation yourself.
File: memory.cpp
#include <final/final.h>
using namespace finalcut;
int main (int argc, char* argv[])
{
FApplication app(argc, argv);
// The object dialog is managed by app
FDialog* dialog = new FDialog(&app);
dialog->setText ("Window Title");
dialog->setGeometry (25, 5, 40, 8);
// The object input is managed by dialog
FLineEdit* input = new FLineEdit("predefined text", dialog);
input->setGeometry(8, 2, 29, 1);
input->setLabelText (L"&Input");
// The object label is managed by dialog
FLabel* label = new FLabel ( "Lorem ipsum dolor sit amet, consectetur "
"adipiscing elit, sed do eiusmod tempor "
"incididunt ut labore et dolore magna aliqua."
, dialog );
label->setGeometry (2, 4, 36, 1);
app.setMainWidget(dialog);
dialog->show();
return app.exec();
}
(Note: You can close the window with the mouse, Shift+F10 or Ctrl+^)
After entering the source code in memory.cpp you can compile the above program with gcc:
g++ -O2 -lfinal memory.cpp -o memory
Event Processing
Calling FApplication::exec()
starts the FINAL CUT main event loop.
While the event loop is running, the system constantly checks whether
an event has occurred and sends it to the application's currently focused
object. The events of the terminal such as keystrokes, mouse actions or
resizing the terminal are translated into FEvent
objects and sent it to
the active FObject
. It is also possible to use FApplication::sendEvent()
or FApplication::queueEvent()
to send your own events to an object.
FObject
-derived objects process incoming events by reimplementing the
virtual method event()
. The FObject
itself calls only
onTimer()
or onUserEvent()
and ignores all other events. The
FObject
-derived class FWidget
also reimplements the event()
method
to handle further events. FWidget
calls the FWidget::onKeyPress
method
when you press a key, or the FWidget::onMouseDown
method when you click
a mouse button.
Event handler reimplementation
An event in FINAL CUT is an object that inherits from the base class
FEvent
. There are several event types, represented by an enum value.
For example, the method FEvent::type()
returns the type
fc::MouseDown_Event
when you press down a mouse button.
Some event types have data that cannot store in an FEvent
object.
For example, a click event of the mouse must store which button it
triggered where the mouse pointer was at that time. In classes derived
from FEvent
, such as FMouseEvent()
, we store this data.
Widgets get their events from the event()
method inherited from FObject.
The implementation of event()
in FWidget
forwards the most common event
types to specific event handlers such as FMouseEvent()
, FKeyEvent()
or
FResizeEvent()
. There are many other event types. It is also possible to
create own event types and send them to other objects.
The FINAL CUT event types:
enum events
{
None_Event, // invalid event
KeyPress_Event, // key pressed
KeyUp_Event, // key released
KeyDown_Event, // key pressed
MouseDown_Event, // mouse button pressed
MouseUp_Event, // mouse button released
MouseDoubleClick_Event, // mouse button double click
MouseWheel_Event, // mouse wheel rolled
MouseMove_Event, // mouse move
FocusIn_Event, // focus in
FocusOut_Event, // focus out
ChildFocusIn_Event, // child focus in
ChildFocusOut_Event, // child focus out
WindowActive_Event, // activate window
WindowInactive_Event, // deactivate window
WindowRaised_Event, // raise window
WindowLowered_Event, // lower window
Accelerator_Event, // keyboard accelerator
Resize_Event, // terminal resize
Show_Event, // widget is shown
Hide_Event, // widget is hidden
Close_Event, // widget close
Timer_Event, // timer event occur
User_Event // user defined event
};
File: timer.cpp
#include <final/final.h>
using namespace finalcut;
class dialogWidget : public FDialog
{
public:
explicit dialogWidget (FWidget* parent = nullptr)
: FDialog(parent)
{
setText ("Dialog");
setGeometry (25, 5, 23, 4);
label.setGeometry (1, 1, 10, 1);
label.setAlignment (fc::alignRight);
value.setGeometry (11, 1, 10, 1);
id = addTimer(100);
}
private:
virtual void onTimer (FTimerEvent* ev)
{
if ( id == ev->getTimerId() && n < 9999999999 )
{
value.setNumber(n);
value.redraw();
n++;
}
}
FLabel label{"Counter: ", this};
FLabel value{"0", this};
long n{0};
int id{0};
};
int main (int argc, char* argv[])
{
FApplication app(argc, argv);
dialogWidget dialog(&app);
app.setMainWidget(&dialog);
dialog.show();
return app.exec();
}
(Note: You can close the window with the mouse, Shift+F10 or Ctrl+^)
After entering the source code in timer.cpp you can compile the above program with gcc:
g++ -O2 -std=c++11 -lfinal timer.cpp -o timer